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Mending Broken Trust: Ensuring Privacy and Integrity Online

Abstract

Common Internet protocols fail to meet users’ reasonable security expectations in a

number of subtle ways. In this work we address three major issues in online communica-

tion privacy and integrity: software integrity in web applications, secure multi-party instant

messaging, and consistency in distributed protocols subject to Byzantine failures.

To protect users from malicious websites, modern web browsers enforce isolation be-

tween potentially-malicious code from different sources. Even with perfect isolation, a

web server which unintentionally serves malicious code, known as Cross-Site Scripting

(XSS), allows attackers to take full-control of the web application’s client-side interface.

Previous XSS defenses primarily targeted only the server-side or the client-side, leading to

a semantic gap. To address this problem, we created Noncespaces, an end-to-end system

that allows web servers to reliably identify untrusted content so that browsers can enforce

flexible security policies, neutralizing XSS vulnerabilities.

Many other online communication mediums also suffer from confidentiality and in-

tegrity problems. Instant Messaging (IM), another popular method of communication on

the Internet, mimics impromptu face-to-face conversation. However, nearly all IM proto-

cols fail to provide either confidentiality, end-to-end origin authentication, or deniability.

Off-the-Record Messaging provides a solution for two-party conversations, but it does not

generalize to conversations of three or more parties. To provide secure IM for privacy-

conscious users, we propose Multi-party Off-the-Record Messaging (mpOTR). mpOTR

provides confidentiality, end-to-end origin authentication, and deniability for conversations

between an arbitrary number of parties.
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Though mpOTR improves security guarantees for multi-party IM, dishonest users may

violate consistency between correct users undetected until the chat session ends. Any dis-

tributed system which seeks to ensure causal consistency and liveness in a Byzantine en-

vironment faces similar challenges. Most existing protocols only provide guarantees when

Byzantine failures do not occur; or they sacrifice consistency, liveness, or both when too

many Byzantine failures occur. Either alternative is a poor fit for peer-to-peer systems that

require consistency and liveness but cannot bound the number of Byzantine failures. To

address this issue, we propose OldBlue, a broadcast protocol which ensures causal consis-

tency and liveness between connected correct processes even when an arbitrary number of

Byzantine failures occur.
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Chapter 1

Introduction

In times past, it was relatively straightforward to adopt habits to protect personal privacy

and property. For someone to rob you, profile you, or surveil you, they had to be physically

proximate and specifically target you. Individuals could protect their privacy by being

mindful of where they were, what they said, and to whom. Individuals could protect their

property by moving to safe localities and being careful about where they traveled. It was

unthinkable that people could be deprived of their property and privacy by someone in a

far-removed geographic location.

The advances in computing power and connectivity that characterize the Internet Age

have enabled communication and commerce to be conducted across vast distances with

ease. Voice-Over-IP (VOIP), Instant Messaging (IM), and email replace in person conver-

sation and traditional postal services by providing real-time long-distance conversation and

nearly-instantaneous document delivery. The World Wide Web provides a ubiquitous plat-

form where individuals can manage their finances, engage in commerce, read news from

diverse sources, and communicate with others all over the world. It should come as no
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surprise that the Internet has come to play a very important role in business and personal

life in the modern world.

The gifts of the Internet Age are not without their drawbacks. Advances in computation

and communication efficiency can also be harnessed by miscreants to extend their sphere

of influence and capabilities. Our exposure to those who wish to abuse and defraud us

is increasing as more aspects of our daily lives are conducted online. Automation and

system monoculture allow large-scale security compromises in the form of Internet worms,

viruses, and botnets. Large-scale data aggregation allows wholesale compromise of the

financial information of millions of people [58, 44, 54] and facilitates widespread profiling,

location tracking, and surveillance [4, 27, 79]. Modern computing systems are sufficiently

complex and opaque to the average user that the online analogues to the intuition and

audiovisual cues that have kept them safe in the physical world may not be obvious. This

makes designing information systems that meet the reasonable security expectations of

average users a nuanced and challenging task.

When a user visits a bank web site over a secure connection, they should not have to

worry that visiting the page gives an attacker access to their account, causes confidential

information on the page to be leaked, or that the content they receive has been modified

by an external attacker. Yet Cross-Site Scripting, an incredibly common web application

vulnerability, allows all of these things to occur. When users engage in group discussions

online, they should not have to worry that it is being recorded by an outside party, that an

attacker is impersonating a legitimate discussant, that later, a rogue conversation member

will be able to prove their authorship of statements made in confidence to an outside party,

or that they may be basing their understanding and actions on a different version of the

story than other parties to the same conversation. Yet common communication protocols
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currently in use fail to provide one or more of the above properties. In this work we seek

to restore some of the trust that users should be able to have in their information systems

by addressing each of the above issues.

In Chapter 2, we address the problem of Cross-Site Scripting vulnerabilities in web

applications. The web has become a ubiquitous platform for user-centric Internet applica-

tions. However, the trustworthiness of web applications is being undermined by Cross-Site

Scripting (XSS) vulnerabilities which allow an attacker to inject malicious code into pages

served by a trusted web server. Web browsers will run the injected code with the same

permissions as all other client-side code from the same server allowing the attacker to

modify the content displayed to the user, read all content served to the user, and perform

any action in the web application which the user is authorized to perform. Historically, web

browsers are very forgiving. When presented with malformed content, web browsers use

ad hoc error recovery algorithms to derive a “reasonable” parse of the content. Previous

XSS defenses were primarily server-side-only or client-side-only leading to a semantic gap

between client and server. Only the server is in a position to distinguish between trusted

and untrusted content leaving client-side-only mechanisms to guess the trustworthiness of

content provided by the server. Only the browser is in a position to know how it will

ultimately parse content leaving server-side-only solutions to guess the way that various

browsers will interpret the content they serve. To address these issues, we developed Non-

cespaces, an end-to-end system to neutralize XSS vulnerabilities. With Noncespaces the

server automatically identifies untrusted content and annotates all content with a trust label

before sending it to the browser. The browser uses a server-specified policy which gov-

erns the capabilities of content in each trust class to ensure that untrusted content cannot

perform unauthorized actions. To demonstrate the applicability of Noncespaces to existing
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web applications, we modified two popular web applications to use Noncespaces and per-

formed an extensive security evaluation to validate the ability of Noncespaces to protect

confidentiality and integrity on the web by preventing XSS attacks.

The web is just one of many online communication mediums that suffers from con-

fidentiality and integrity violations. Instant Messaging (IM), another popular method of

communication on the Internet, mimics impromptu face-to-face conversation. However,

most popular IM protocols do little to protect against eavesdropping and impersonation.

Typical solutions for secure electronic communication use encryption and digital signa-

tures which provide three properties: confidentiality, authenticity1, and non-repudiation.

Confidentiality and authenticity are precisely the properties we desire to prevent eaves-

dropping and impersonation. However, non-repudiation refers to the receiver’s ability to

prove to an outside party that a specific user authored a given message. This is undesirable

in many circumstances, it is precisely the property that whistle-blowers, dissidents, infor-

mants, and journalists often wish to avoid. Off-the-Record Messaging (OTR), presented by

Borisov, Goldberg, and Brewer [13], provides confidentiality and authenticity for instant

messages between two parties while avoiding non-repudiation by using message authen-

tication codes. Message authentication codes give each party equal power — preventing

cryptographic proofs that a given user, and not the other, authored a given message. How-

ever, it is not straightforward to extend OTR to the chatroom environment where three or

more individuals participate in a group conversation. With three or more parties a message

authentication code only ensures a message recipient that the sender was a member of the

chatroom but it does not prevent one chatroom member from impersonating another.

Chapter 3 presents Multi-party Off-the-Record Messaging (mpOTR), a protocol which

1Authenticity encapsulates two integrity properties: origin authentication which prevents impersonation,
and message authentication which prevents unauthorized modification of messages.
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provides confidential, authenticated, and deniable instant messaging for online chatrooms

of three or more users. Confidentiality with perfect-forward secrecy is achieved using

standard cryptographic constructs which ensure that past conversations remain confidential

even if participants’ long-lived private keys are compromised at a later time. Authenticity

is ensured by using per-session signature keys allowing the recipient of a message to detect

attempts to impersonate or modify messages sent by an honest chatroom participant. Deni-

ability is based on a user’s ability to disassociate from the signing key pair used in a session.

The ability to repudiate your willingness to participate in a conversation is very important;

in some cases revealing who you are willing to speak to may be nearly as damaging as

revealing the contents of the conversation. [45, 47, 38] mpOTR is carefully structured to

allow an outsider, without knowledge of the private key of any chatroom participant, to

forge a cryptographically valid mpOTR transcript. This provides a basis for plausible de-

niability: because anyone can forge a cryptographically valid transcript without knowledge

of the participants’ private keys, even a judge with access to the participants’ private keys

has no algorithmic justification for accepting any transcript as authentic.2 mpOTR achieves

a stronger deniability property than OTR insomuch that each OTR session results in a cryp-

tographic proof, which can be verified by an outside judge, that a participant was willing

to hold a conversation with some other user.

Dishonest mpOTR participants may fail to send a message to some participants or may

send conflicting messages to disjoint subsets of participants, network or chat server failures

(whether benign or malicious) may partition the chatroom for arbitrary lengths of time, and

malicious participants may collude to deny service to the rest of the chatroom. Ensuring

consensus — that all honest participants agree on what was said — in a multi-party protocol

2A forged transcript cannot fool an active participant of the chatroom, but, after the fact, a forgery it is
indistinguishable from an authentic chat transcript containing the same plaintexts.
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where any number of participants may be working to violate consensus for their own ends

is a non-trivial task. Therefore, mpOTR only provides a binary confirmation of consensus

at the end of each session. When a chat session ends participants learn whether or not all

participants agreed on the contents of the chat transcript.

Obviously, waiting until the end of a chat session to detect violations of consensus

is less than ideal. Ideally, to prevent misbehavior and meet users expectations, mpOTR

should provide a number of additional consensus and availability properties. At each point

in time during the conversation, honest participants should be able to determine a useful

lower bound on consensus over the chat transcript up to that point. Messages should be

delivered in causal order to ensure that every reply is only delivered after all of its an-

tecedents. During a network partition, participants within a connected component of the

chatroom should be able to continue communicating with one another. When a network

partition is healed, participants on both sides should be able resynchronize and reach a

consistent state. And, to keep dishonest participants from preventing honest participants

from communicating through resource starvation, fair scheduling should be employed to

ensure that honest participants continue to grant each other a fair share of network re-

sources. These availability and consistency properties are not unique to mpOTR, they are

the guarantees provided by any highly-available causally-ordered broadcast protocol that

remains secure in an environment where an arbitrary number of Byzantine failures3 may

occur.

Consensus in a Byzantine environment is a long-studied problem typically solved us-

ing Byzantine Agreement [55, 57, 23] or Reliable Broadcast [21, 86, 6, 40, 46] protocols.

However, all Byzantine Agreement, Consensus, and Reliable Broadcast protocols sacrifice

3In contrast to a benign (or halting) failure where failed processes simply stop communicating, under a
Byzantine failure failed process may behave in an arbitrary and malicious manner.
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either consistency, availability, or both during network partitions. This is not accidental.

For example, in Byzantine Agreement protocols, a sender sends a message m and all cor-

rect processes must deliver the some message m′. If the sender was correct m′ must be

equal m. Suppose there are only two correct processes Â and B̂ on opposite sides of a net-

work partition. Â sends a message m. For availability to be preserved, Â must be able to

deliver m. However, for Byzantine Agreement consistency to be preserved, B̂ must also

deliver m. But, due to the network partition, there is no way for m to be communicated to B̂.

Therefore, either availability or consistency must be sacrificed. This is a fundamental lim-

itation for distributed systems which attempt to ensure strong consistency properties such

as Byzantine Agreement and Consensus. The CAP Theorem [19, 42] states that, during

a network partition, a distributed system must choose between maintaining availability or

consistency4. It cannot preserve both properties simultaneously.

In Chapter 4, we present OldBlue, a broadcast protocol which maintains availability

and causal consistency between correct connected participants during network partitions.

In contrast to previous Causal Broadcast protocols which tolerate only benign failures [68,

3, 82, 40, 11, 84], OldBlue can tolerate an arbitrary number of Byzantine failures. OldBlue

provides an incremental guarantee of consensus. When an honest participant Â delivers a

message m sent by another honest participant B̂, OldBlue ensures that Â and B̂ agree on all

messages sent or received by B̂ before m was sent. Availability during network partitions

allows correct connected participants to continue to send and receive messages with one

another. Cooperative retransmission is used to allow participants to converge toward a

consistent shared state when recovering from lost messages or network partitions. And,

4Specifically, [42] proves the impossibility of preserving both atomic consistency and availability. How-
ever, more recent work [61] proves the impossibility of maintaining availability and a number of weaker
consistency properties during a network partition.
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OldBlue employs fair scheduling and other mechanisms to prevent dishonest participants

from causing starvation among honest participants. We provide formal definitions of the

properties that OldBlue provides, prove that OldBlue ensures those properties, and simulate

OldBlue with groups of various size to better characterize its network performance.

Finally, Chapter 5 concludes and discusses directions for future work.
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Chapter 2

Noncespaces: Using Randomization to

Defeat Cross-Site Scripting Attacks

2.1 Introduction

In the years since its humble beginnings as a mechanism to publish and link static docu-

ments, the World Wide Web has become a ubiquitous platform for delivering rich Internet

applications. On the web users can: conduct research, shop for retail goods, manage their

finances, and communicate and collaborate with others through diverse venues from open

forums to private messaging. Due to the great monetary and psychological value of these

activities, web applications must provide their users with basic confidentiality and integrity

guarantees. When a user reads a forum, they should not need to worry that posters to the

form will be able to read their private email. When a user shops for a product, they should

not have to worry that reviewers of the product will be given access to their bank or stock

accounts. Modern web browsers are fundamentally multi-tenant — code from multiple
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different web applications can run within the same browser session. In the absence of

sufficient isolation, client-side code from malicious web sites could compromise the con-

fidentiality and integrity of data from other sites.

To protect against malicious sites, web browsers adopt a share-nothing sandbox policy

that prevents a web application from accessing client-side data belonging to other web

applications. This mechanism, known as the Same Origin Policy [91], distinguishes web

application code based on its source or origin1. When code from one web page requests

to access code or data in another web page, the web browser checks to see if the requester

and the target are both from the same origin. If the origins match, the access is permitted,

if their origins differ, access is denied. Barring other vulnerabilities within the browser, if

an attacker wishes to gain access to client-side state from another web application, he must

find a way to cause his2 code to have the same origin as the target web application.

Cross-Site Scripting (XSS) vulnerabilities are a class of server-side vulnerabilities that

allow an attacker to launder malicious code through a trusted server. This effectively al-

lows an attacker to forge the origin of the victim web application causing the victim web

application to serve the attacker’s code and giving it the same origin as all other code from

that application. At this point, there is no further barrier between the attacker’s code and

the victim web application’s client-side state. The attacker can run malicious code within

the browser, impersonate the user to the victim web application, steal the user’s private

data and authentication credentials, or present forged content to the user. XSS vulnerabili-

ties pose a serious threat to the security of modern web applications. Year after year, they

top lists of the most dangerous and the most commonly reported vulnerabilities [31, 74].

1The origin of a web page is defined as the 3-tuple of the hostname, port, and protocol of the web server
that served the page. Some browsers, e.g. some versions of Internet Explorer, define origins more broadly by
ignoring the port number. [119, Chapter 9]

2When we refer to malicious actors in this document, we choose personal pronouns arbitrarily.
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They are surprisingly easy to create and difficult to mitigate completely. Any web appli-

cation that fails to properly sanitize user input before displaying it to other users will be

vulnerable to XSS attacks.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
2 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
3 <html xmlns="http://www.w3.org/1999/xhtml" lang="en">
4 <head> <title>nile.com : ++Shopping</title> </head>
5 <body> <h1 id="title">{item_name}</h1>
6 <p class=’review’>{review.text}
7 -- <a href=’{review.contact}’>{review.author}</a> </p>
8 </body>
9 </html>

Figure 2.1: Vulnerable Web Page Template. This template is used to render dynamic web
pages. It is written in a Smarty-like language where the appearance of the token {x}
instructs the template engine to replace the token by the value of the variable named “x”.

Figure 2.1 shows an example web page template like those used by many web ap-

plications to render dynamic web pages. A sequence of the form {x} will be replaced

at runtime by the value of the variable x. For instance, if an attacker can submit a re-

view containing <script src=’http://badguy.com/attack.js’/>, the template vari-

able review.text will be replaced with this script tag. When a victim visits the page, the

victim’s web browser will download and execute http://badguy.com/attack.js with

the same permissions as legitimate scripts. It has long been recognized that non-script el-

ements pose a threat as well. [24, 105] For instance, an attacker could inject a fake login

form and style it to obscure a legitimate login form. When the victim attempts to login,

their credentials could be sent to a site of the attacker’s choosing. Nevertheless, many exist-

ing XSS defenses focus on preventing the execution of untrusted scripts without addressing

malicious non-script content.

11



To prevent XSS vulnerabilities, all the untrusted (user-contributed) content in a web

page must be sanitized. However, proper sanitization is very challenging. The context in

which untrusted data is interpreted determines the forms of sanitization that are appropriate.

If sanitization is performed by the server, but the browser interprets the content in a way

that the server did not intend, there are many ways for an attacker to take advantage of the

discrepancy [89]. The Samy worm [92], one of the fastest spreading worms to date, used

the ambiguity between server sanitization and client parsing to propagate. Alternatively,

one could let the client sanitize untrusted content. However, without the server’s help, the

client cannot distinguish between trusted and untrusted content in a web page since both

appear to originate from the trusted server. We can avoid ambiguity between the client

and server by requiring the server to identify untrusted content and requiring the client to

ensure that it is displayed safely.

However, challenges remain. After the server identifies untrusted content, it needs

to tell the client the locations of the untrusted content in the document tree. If the un-

trusted content (without executing) could distort the structure of the document tree, it

could evade sanitization. To achieve this, the untrusted content could contain node de-

limiters that split the original document node where untrusted content resides into multiple

nodes. For example, if untrusted scripts are not permitted within <p class=’review’>

tags in the template of Figure 2.1, an attacker could submit a review of </p> <script

src=’http://badguy.com/attack.js’/> <p> to escape the review paragraph in order

to cause his injected script to execute. This is known as a Node-splitting attack [48]. To de-

fend against this attack without restricting the richness of user provided content, the server

must take care to remove only those node delimiters which would introduce new trusted

nodes.
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Our system, Noncespaces, provides an end-to-end mechanism that allows a server to

identify untrusted content, to reliably convey this information to the client, and that allows

the client to enforce a security policy on the untrusted content. Noncespaces is inspired by

Instruction Set Randomization [49, 7], which randomizes the processor’s instruction set to

identify and defeat injected malicious binary code. Noncespaces leverages the similarities

between injected code in executable programs and injected content in web pages to apply

Instruction Set Randomization-like techniques to prevent XSS vulnerabilities. Nonces-

paces randomizes (X)HTML tags and attributes to identify and defeat injected malicious

web content. Randomization serves two purposes. First, it identifies untrusted content so

that the client can use a policy to limit the capabilities of untrusted content. Second, it

prevents the untrusted content from distorting the document tree. Since the randomized

tags are not guessable by the attacker, he cannot embed proper delimiters in the untrusted

content to split the containing node without causing parsing errors.

Various techniques can be used to distinguish between trusted and untrusted content on

the server-side.

In order to efficiently distinguish between trusted and untrusted content on the server-

side, Noncespaces takes advantage of a popular web application design pattern. In Model-

View-Controller [20] frameworks, template languages are commonly used to generate

(X)HTML output. As seen in the example of Figure 2.1, a template provides the basic

overall structure of the (X)HTML page and explicit template variable expressions are used

to insert dynamic data. Noncespaces modifies a popular template engine to automatically

distinguish between trusted static content written by the web application developers and

dynamic content that may be from an untrusted source. This allows Noncespaces to easily

identify the bulk of trusted (X)HTML code in the web application and facilitates simple, ef-
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fective client-side policies to defend against popular XSS attack vectors. Noncespaces uses

a flexible yet simple language to specify common security policies. For more complex in-

formation flow policies, the Noncespaces policy language supports organizing trust classes

into an arbitrary lattice allowing a wide range of expression. In contrast to most existing

XSS defenses, Noncespaces allows prevention of both script and non-script XSS attacks.

To ease policy development, Noncespaces provides a training mode that enables a policy

writer to quickly create a policy allowing intended application behavior. To demonstrate

the effectiveness and usability of Noncespaces we port a 155K SLOC blog application to

work with Noncespaces, use the training mode to develop a policy for the application, and

conduct an extensive security evaluation with the generated policy.

2.2 Threat Model

We restrict our attention to XSS attacks where the malicious content is unintentionally

delivered to the victim user by a trusted server. Specifically, our solution addresses reflected

(Type I) and stored (Type II) XSS attacks. In a reflected XSS attack, the victim visits a

page controlled by the attacker. The attacker encodes malicious content into a link, web

form, embedded frame, or JavaScript redirect that targets a trusted web site. When the

victim’s browser sends the attacker-controlled request to the targeted web application, the

malicious content is reflected by the trusted web server back to the victim’s web browser.

In a stored XSS attack, the attacker causes malicious content to be stored directly on a

trusted web server. Later, when the victim visits the trusted web server, the attacker’s

malicious content will be delivered to the victim’s web browser. In both scenarios, because

the malicious content was received from a trusted server, it will be granted full access to
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all client-side data belonging to the trusted server.

The implementation of Noncespaces in this work does not attempt to address DOM-

based (Type III) XSS attacks, where trusted client-side JavaScript permits the injection of

untrusted content in violation the web application’s security policy. However, the tech-

niques used by Noncespaces could also be used in a client-side JavaScript implementation

to prevent DOM-based XSS attacks.

Noncespaces does not seek to address Universal XSS Vulnerabilities [94], where a

browser extension can be tricked into violating the browser’s own security policies; or

Cross-Site Request Forgery (CSRF), where a malicious web server causes the client to send

requests to a trusted server that is not prepared to distinguish between requests initiated by

other sites from requests initiated by the user.

Because the goal of Noncespaces is to defend against XSS attacks, we assume that the

attacker’s only means of attack is to submit malicious data to XSS-vulnerable web appli-

cations. Existing mechanisms can be used to ensure that an attacker cannot compromise

the web server or browser directly via buffer overflow attacks, malware, etc.

2.3 Noncespaces

The goal of Noncespaces is to allow the client to safely display documents that contain

both trusted content generated by a web application and untrusted content provided by un-

trusted users. To eliminate the client-server semantic gap and to adapt to differing security

needs, the browser enforces a configurable security policy. The policy specifies the browser

capabilities that each type of content can exercise. In this way, malicious content injected

by an attacker is restricted to the capabilities allowed to untrusted content by the policy.
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In order for the client to faithfully enforce a server-specified policy, the client must be

able to unambiguously determine the trustworthiness of all content in a document. There-

fore, the server must first classify content into discrete trust classes. The server then must

communicate the content, trust classification, and policy to the client. Finally, the client

can enforce the policy. This process is depicted in Figure 2.2.

Figure 2.2: Noncespaces Overview. The server delivers an (X)HTML document annotated
with trust class information and a policy to the client. The client accepts the document only
if it satisfies the policy.

Our architecture permits Noncespaces to defeat both reflected and stored XSS attacks.

In both scenarios, untrusted user input is returned to a victim user—immediately in the

case of a reflected XSS attack or at some later time in the case of a stored XSS attack. In

either case, as long as the server’s content classification is conservative, the server faithfully

communicates its classifications to the client, and the client faithfully enforces the server-

specified policy, untrusted content will be confined to the capabilities expressly permitted

to it by the policy, neutralizing the effects of an attempted XSS attack.

We take a modular approach to classifying content. The server can use a variety of

techniques to determine the trust classes of content, ranging from whitelisting known-good
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code to annotating output based on program analysis or information flow tracking. We

present an expedient approach in Section 2.4. In this section, we describe our mechanisms

for communicating trust information and policy enforcement.

2.3.1 Communicating Trust Information

There are a variety of mechanisms that a server might use to indicate content trust informa-

tion to clients. The server could use a designated attribute to indicate the trust class of an

element. However, malicious content may contain elements which forge the attributes that

designate trusted content. Alternatively, the server could indicate the trustworthiness of

content by its location in the document, e.g. restricting the capabilities of all descendants

of a specific document node — a sandbox node [36, 66, 48]. However, malicious content

may contain tags that split its original enclosing node into multiple nodes so that malicious

nodes are no longer descendants of the sandbox node. This is the node-splitting attack

discussed in Section 2.1.

Another alternative, inspired by Instruction Set Randomization (ISR), is to greatly re-

duce the probability of a successful attempt to forge trust class information by preventing

an attacker from being able name trusted content. ISR defends against binary code injection

attacks by randomly perturbing the instruction set of an application. To inject code with

predictable semantics into the application, the attacker must correctly guess the random-

ization used. This is very difficult if the number of possible randomizations is sufficiently

large. The attacker is effectively prevented from injecting code. We propose a similar tech-

nique for (X)HTML. We associate a different randomization function with each content

trust class. The names of all elements and attributes in a trust class are remapped accord-

ing to the associated randomization function so that no injected content can correctly name
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(X)HTML elements or attributes in other trust classes.

1 <!DOCTYPE html>
2 <r617html r617lang="en">
3 <r617head> <r617title>nile.com : ++Shopping</r617title> </r617head>
4 <r617body> <r617h1 r617id="title">Useless Do-dad</r617h1>
5 <r617p r617class=’review’></p><script>attack()</script><p>
6 -- <r617a href=’’></r617a> </r617p>
7 </r617body>
8 </r617html>

Figure 2.3: HTML Document Randomized by Noncespaces. A random prefix has been ap-
plied to trusted HTML content in a template like that of Figure 2.1. The rendered document
contains a node-splitting attack injected by a malicious user.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"
2 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">
3 <r617:html xmlns="http://www.w3.org/1999/xhtml" r617:lang="en"
4 xmlns:r617="http://www.w3.org/1999/xhtml">
5 <r617:head> <r617:title>nile.com : ++Shopping</r617:title> </r617:head>
6 <r617:body> <r617:h1 r617:id="title">Useless Do-dad</r617:h1>
7 <r617:p r617:class=’review’></p><script>attack()</script><p>
8 -- <r617:a href=’’></r617:a> </r617:p>
9 </r617:body>

10 </r617:html>

Figure 2.4: XHTML Document Randomized by Noncespaces. A random namespace prefix
has been applied to trusted XHTML content in the template of Figure 2.1. The rendered
document contains a node-splitting attack injected by a malicious user.

For example, let the randomly chosen string r617 denote trusted content. We can defeat

XSS attacks against the document from Figure 2.1 by annotating it. For HTML documents,

we can prefix trusted tags and attributes with our random identifier as shown in Figure 2.3.

For XHTML documents, we can preserve the original XML semantics of the document
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while annotating by using our random identifier as an XML namespace prefix3 as shown

in Figure 2.4.

As illustrated by the embedded node-splitting attack, the attacker cannot inject mali-

cious content and cause it to be interpreted as trusted because he does not know the random

prefix. He also cannot escape from the enclosing paragraph element, because he does not

know the random prefix and therefore cannot embed a closing tag with this prefix. (In the

HTML document, the <script> element is the child of an <r617p> element, not a <p>

element. In the XHTML document, when a closing tag tries to close an open tag but the

prefixes of the two tags do not match, the XML parser will fail with an error.4)

To prevent an attacker from guessing (namespace) prefixes, we choose the prefixes

uniformly at random every time a response is rendered — hence the term Noncespaces.

Given a prefix space of appropriate size, knowing the random prefixes in one instance of

the document does not help an attacker predict prefixes in future instances of the document.

There is an additional complication, however. Naı̈vely prohibiting all untrusted content

will not work because most modern web applications are designed to accept some amount

of rich content from users. Though we can use randomization to ensure integrity of trust

class information, a policy that places appropriate constraints on rich content provided

by untrusted users is still necessary for our solution to be useful in practice. Therefore,

3To permit mixing of XML languages in a single document, XML namespaces [17] can be used to des-
ignate elements and attributes by namespace URI and local name. The URI for the language is bound to a
prefix using the xmlns attribute. The prefix is then used to qualify the local names of elements and attributes
from that language. E.g. <p:a xmlns:p=’http://www.w3.org/1999/xhtml’> designates an XHTML<a>
element.

4A subtlety occurs when two different prefixes, say a and b, are associated with the same URI. In this
case, is “<a:foo></b:foo>” valid? Even though <a:foo> and <b:foo> are semantically equivalent, XML
matches opening and closing tags lexically [18]. Thus “<a:foo></b:foo>” is not well-formed regardless of
how a and b are bound. All XHTML compliant browsers we have tested exhibited this behavior. This implies
that Noncespaces needs to randomize only namespace prefixes, but not the URIs to which the prefixes are
associated.
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we provide a mechanism for the server to specify a policy for the client to enforce when

rendering the document.

Noncespaces adds three HTTP protocol headers to each HTTP response:

• X-Noncespaces-Version: [0-9]+\.[0-9]+ communicates the version of the Non-

cespaces policy and semantics that should be used, in case future changes are re-

quired.

• X-Noncespaces-Policy: URI denotes the URI of the policy for the current doc-

ument. If the client does not have the policy in its cache, a compliant client must first

retrieve the policy and validate the document before rendering.

• X-Noncespaces-Context: TrustClass=Rand(,TrustClass=Rand)*

Both TrustClass and Rand reduce to Name. To prevent an attacker from guessing

the namespace prefixes in an (X)HTML document, the server must use different ran-

domized prefixes each time it serves the document. This header maps the random

identifiers used in the (X)HTML document delivered by the response to the trust

class names used in the policy. This allows clients to cache the policy because the

server can provide the same policy file to all the requests for the (X)HTML docu-

ment.

Compatibility with Caching

At first glance, response caching may appear to pose a problem for Noncespaces. Nonces-

paces requires that an attacker must not be able to predict the value of prefixes in future

document instances. Local caches, caching proxies, and content delivery networks (CDNs)

save a single response and may deliver it multiple times. Indeed, if it were possible to inject
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malicious content into a response after learning the prefix values chosen when the docu-

ment was rendered, an attacker could defeat our encoding mechanism. Also, if a cache

delivers a Noncespaces-encoded document without its associated headers, clients will not

be able to interpret the response correctly.

To prevent an attacker from injecting content after learning which prefixes were chosen,

we ensure that HTTP/1.1 compliant caches will only respond with complete Noncespaces-

encoded responses. Only content injected by an attacker at the time the document was

rendered, before the attacker learns the prefix values, will be included in any single re-

sponse. Even if that response is subsequently rendered multiple times, it does not provide

additional opportunities for an attacker to inject content.

An HTTP/1.1 [39] compliant cache will not combine portions of multiple responses

into a single response unless it can ensure that the entity’s octet representation has not

changed. Choosing new random prefixes every time a document is rendered ensures that

the octet representation of the entity will differ, with high probability, in every response.

This ensures that a cache will not provide additional opportunities to inject content by

combining multiple responses.

HTTP/1.1 also requires caches to store all end-to-end headers with each cache entry and

to include them in any response formed from that cache entry. This ensures that clients will

receive the headers necessary to interpret each Noncespaces-encoded response whenever

such a response is served by a cache.

2.3.2 Policy Specification

A Noncespaces policy specifies the browser capabilities that content in a given trust class

can invoke. A grammar for our policy language is given in Figure 2.5. We designed
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Policy ::= ((Namespace | TrustClass | Order | Rule | Comment) \n)*
Namespace ::= namespace Name ”? URI ”? Comment?
TrustClass ::= trustclass Name Comment?
Order ::= order Relations Comment?
Relations ::= Name < Name

| Name < Name , Relations
Rule ::= Decision XPathExpression
Decision ::= allow | deny
Comment ::= # .*
Name ::= [a-zA-Z0-9 .-]+
URI ::= As per RFC 2396

Figure 2.5: Grammar for Noncespaces Client-side Policy Language

boolean ns:trust-class(node, constraint) where constraint is a
string specifying a comparison operator (e.g. =, !=, >, <, >=, <=) and the name of
a trust class. If the trust class of node n is tc1, ns:trust-class(n, ’>=tc2’)
returns the value of tc1 >= tc2.

boolean ns:isspecified(attr) Returns true if attr was explicitly specified
in the document (as opposed to a default attribute supplied by a parser).

string ns:tolower(string) Return argument converted to uppercase.

string ns:toupper(string) Return argument converted to lowercase.

Figure 2.6: XPath Functions Provided by Noncespaces

the policy language to be similar to a firewall configuration language. Comments begin

with an # character and extend to the end of the line. A minimal policy consists of a se-

quence of allow/deny rules. Each rule applies a policy decision—allow or deny— to a

set of document nodes matched using an XPath expression. We have employed the XPath

language because it was specifically designed for querying content from hierarchical doc-

uments. This allows constraints to be placed on elements, attributes, values, and position

of nodes in the document hierarchy. Noncespaces also provides utility functions for string
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normalization and for matching nodes based on trust class or whether an attribute value has

changed from the default specified by the language (Figure 2.6). For example, the XPath

expression //a can be used to match all anchor elements descending from the document’s

root node (//). //@href will match all href attributes in the document. namespace decla-

rations bind a namespace prefix to an XML namespace URI for use in XPath expressions.

The trustclass and order commands are used to define the hierarchy of trust classes.

The optional trustclass command declares a trust class. A sequence of order com-

mands encode the partial ordering between trust classes. This allows policy authors to

specify any lattice relation over trust classes.

When checking that a document conforms to a policy, the client considers each rule

in order and matches the XPath expression against the nodes in the document’s Document

Object Model. Policy decisions are made on a first-matched basis. When an allow rule

matches a node, the client permits the node and will not consider the node again when

evaluating subsequent rules. When a deny rule matches a node, the client determines that

the document violates the policy and will not render the document. To provide a fail-safe

default, if any nodes remain unmatched after evaluating all rules, we consider those nodes

to be policy violations (i.e. all policies end with an implicit deny //*|//@*). In the event

that a policy author wishes to override the default behavior in order to specify a blacklist

policy, he can specify allow //*|//@* as the last rule to allow all nodes that have not

been matched so far. Algorithm 1 gives the algorithm for checking a policy.

Example policies are provided in Figures 2.7 and 2.8. The policy in Figure 2.7 is a

policy for XHTML documents that specifies two trust classes, trusted and untrusted. There

are no restrictions on which tags and attributes can appear in trusted content. Only tags and
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Algorithm 1: Document Validation Algorithm. This algorithm determines whether
a document satisfies a Noncespaces policy.

Input : A document d and a policy p.
Output: TRUE if the document d satisfies the policy p; FALSE otherwise.
begin1

for Element or attribute node n ∈ d do2

n.checked = FALSE3

for Rule r ∈ p.rules do4

for Node n ∈ d.matchNodes(r.XPathExpression) do5

if n.checked == FALSE then6

if r.action == ALLOW then7

n.checked = TRUE8

else9

return FALSE10

for Element or attribute node n ∈ d do11

if n.checked == FALSE then12

return FALSE;13

return TRUE;14

end15

attributes that correspond to BBCode5 are allowed in untrusted content: stylistic markup,

links to other HTTP resources, and images. Note that lines 17–18 only permit link and

image tags to specify URLs for the (non-script) HTTP protocol and that all other attributes

on link and image tags are denied by line 21.

Figure 2.8 demonstrates the language’s flexibility for more fine-grained policies. Lines

1–2 declare that the namespace prefixes x and m used in the following patterns refer to

XHTML and MathML content, respectively. Lines 4–7 declare multiple trust classes and

line 8 defines the ordering between them. The policy provides four trust classes. In or-

5BBCode allows basic formatting and linking of non-active content: https://en.wikipedia.org/
wiki/BBCode
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1 # Restrict untrusted content to safe subset of XHTML
2 namespace x http://www.w3.org/1999/xhtml
3 # Declare trust classes
4 trustclass trusted
5 trustclass untrusted
6 order untrusted < trusted
7

8 # Policy for trusted content
9 allow //x:*[ns:trust-class(., "=trusted")] # Allow all trusted elements

10 allow //@x:*[ns:trust-class(., "=trusted")] # Allow all trusted attributes
11

12 # Allow safe untrusted elements
13 allow //x:b | //x:i | //x:u | //x:s | //x:pre | //x:q
14 allow //x:a | //x:img | //x:blockquote
15

16 # Allow HTTP protocol in the <a href> and <img src> attributes
17 allow //x:a/@href[starts-with(., "http:")]
18 allow //x:img/@src[starts-with(., "http:")]
19

20 # Deny all remaining elements and attributes
21 deny //* | //@*

Figure 2.7: Example Noncespaces Policy. This policy restricts untrusted content to BB-
Code.

der from most to least trust they are: (1) static: static web application content, (2)

developer: dynamic content written by developers, (3) auth: dynamic content written

by authenticated users, and (4) unauth: dynamic content written by unauthenticated users.

In this web application, the capabilities of each trust class are a superset of the capabilities

of all less-trusted classes. Line 11 allows static elements and attributes from any XML

namespace to appear in the document.

In this policy, we make the simplifying assumption that all default attributes added by

the XML parser are safe. Therefore, line 12 allows all default attributes from any XML

namespace. Lines 15–17 allow dynamic XHTML <script> tags and href attributes to

25



1 namespace x http://www.w3.org/1999/xhtml
2 namespace m http://www.w3.org/1998/Math/MathML
3

4 trustclass static # static code
5 trustclass developer # dynamic code written by developers
6 trustclass auth # dynamic code by authenticated users
7 trustclass unauth # dynamic code by unauthenticated users
8 order unauth < auth, auth < developer, developer < static
9

10 # Allow all static code from any namespace and default attributes
11 allow //*[ns:trust-class(., ’=static’)] | //@*[ns:trust-class(., ’=static’)]
12 allow //@*[not(ns:isspecified(.))]
13

14 # Allow developer authored scripts and javascript: links
15 allow //x:script[ns:trust-class(., ’>=developer’)]
16 allow //x:script/@src[ns:trust-class(., ’>=developer’)]
17 allow //@href[ns:trust-class(., ’>=developer’)]
18

19 # Allow authenticated users to provide http: links and images
20 allow //x:a[ns:trust-class(., ’>=auth’)]
21 allow //x:a/@href[starts-with(., ’http:’) and ns:trust-class(., ’>=auth’)]
22 allow //x:img[ns:trust-class(., ’>=auth’)]
23 allow //x:img/@src[starts-with(., ’http:’) and ns:trust-class(., ’>=auth’)]
24

25 # Allow presentation and MathML markup from unauthenticated users
26 allow //x:b | //x:u | //x:i | //x:em | //x:strong | //x:pre
27 allow //m:*

Figure 2.8: Example Multi-level Noncespaces Policy. This policy illustrates multiple lev-
els of trust, multiple XML languages, and use of custom XPath functions provided by
Noncespaces.

be created by developers. Lines 20–23 allow trust classes greater than or equal to auth to

specify links and images that reference an absolute HTTP URL. Finally, lines 26–27 allow

all trust classes to specify various text presentation markup and MathML content.

This policy illustrates several strengths of our policy language. By using

ns:isspecified() on line 12 to allow all default attributes, we avoid having to explicitly
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allow every default attribute that the XML parser might add to each element. Each of the

rules beginning from line 20 illustrates how the ability to make comparisons between trust

classes saves the policy writer from having to explicitly enumerate every trust class that is

permitted to specify a particular element or attribute. Line 27 allows any trust class to spec-

ify any MathML element by qualifying a wildcard with the MathML namespace prefix (m).

Also, because trust classes form a lattice, there is always a unique lowest trust class. In the

event that a server-side bug causes some content to escape classification, the browser can

automatically place that content into the lowest trust class. (Each of these items represents

an improvement over the policy language originally presented in [109].)

Though our examples employ XML, XPath can be used with HTML documents as well.

Even though HTML documents need not be well-formed, browsers translate HTML into

a Document Object Model representation that can be used to service XPath queries. We

prefer this policy mechanism to more complex ones like event-based policies or dynamic

information flow tracking for several reasons. Because it is not Turing complete, it is

easier to reason about the effects of a policy making incorrect policy specification less

likely. Enforcing policy at the syntax (Document Object Model) level also has advantages.

It makes implementation less intrusive, facilitating adoption across multiple browsers and

making it possible to retrofit legacy browsers without requiring internal modifications by

using our proxy implementation described in Section 2.4.2.

2.3.3 Client Enforcement

When receiving a Noncespaces encoded response from a server, the web browser must

ensure that the document is well-formed and conforms to the policy before rendering it.

This requires the browser to retrieve the policy from the web server if it doesn’t already
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have an unexpired copy in its cache. The overhead involved in policy retrieval should be

minimal given that most web pages are assembled from multiple requests. We also expect

it to be common for a single, seldom-changing policy to be used for each web application.

Client-side enforcement of the policy is necessary because it avoids possible semantic

differences between the policy checker and the browser, which might lead the browser to

interpret a document in a way that violates the policy even though the policy checker has

verified the document.

2.4 Implementation

2.4.1 Server Implementation

Noncespaces requires the server to identify untrusted content in web pages. The server may

choose any approach from whitelisting trusted content statically to determining untrusted

content dynamically by program analysis or information flow tracking. In our prototype

implementation, we choose an approach that leverages a popular web application devel-

opment paradigm to conservatively classify content with low overhead. The Model-View-

Controller [20] design pattern advocates separating presentation from business logic. Many

modern web applications employ a template system that inserts the dynamic values which

business logic computes into static templates that decide the presentation of the web page.

Since web developers author templates, content in templates can be trusted. By contrast,

dynamic values may, and often do, come from untrusted sources. We consider dynamic

values to be untrusted. This approach requires that JavaScript be placed in templates to be

recognized as trusted content. This requirement is reasonable because most scripts can be

specified statically. Scripts may then use DOM interaction to query for dynamic inputs.
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Treating all dynamic values as untrusted is safe, but it might be too conservative in some

situations. Consider the following template used to toggle the visibility of a dynamic menu:

<a onclick=’toggle("{id}")’>. The toggle(id) function accepts a string parameter

indicating the HTML id of the element to operate on. Because the value of the onclick

attribute contains a template variable (id), it is treated as a dynamic (untrusted) value.

If the policy denies all untrusted onclick attributes, the client will reject this document,

even when the generated JavaScript code conforms to the developer’s intentions. There

are several straightforward solutions to this problem. Our use of a configurable policy

allows a policy writer to explicitly whitelist safe, untrusted content through constraints on

attribute values. For instance, the policy could allow untrusted onclick attributes which

conform to the intended format: toggle("[A-Za-z0-9]+"). Another alternative is for

certain untrusted content to be whitelisted within the web application after ensuring either

proper sanitization or ensuring that it contains no malicious input by program analysis or

information flow tracking. We would then consider an XHTML construct to be trusted if it

is either static or on the whitelist.

NSmarty

To automatically annotate the content of web pages generated from templates, we modified

the Smarty Template Engine [95], a popular template engine for the PHP language. The

Smarty language is a Turing-complete template language that allows dynamic inclusion of

other templates. A Smarty template consists of free-form text interspersed with template

tags delimited by { and }. A template tag either prints a variable or invokes a function.

To use Smarty, a PHP program invokes the Smarty template engine, passes a template (or

templates) to the engine, and assigns values to the variables referenced in the template.
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The template engine will then generate a document based on the template and the dynamic

values provided.

For our prototype implementation, we apply randomization to XHTML documents. To

randomize XML namespace prefixes in Smarty templates, we must be able to recognize

static XHTML constructs in the template. Since the Smarty language allows Smarty tags

to appear anywhere in a template, e.g. in element and attribute names, we must restrict the

Smarty language to be able to determine all static XHTML elements and attributes. Hence,

we specified a subset of the Smarty language, which we call NSmarty. NSmarty prohibits

template tags from appearing in element names or attribute names. Through these modest

restrictions, we ensure that we can correctly identify all the statically specified XHTML

tags and attributes.

The Smarty template engine operates in two phases. The first time it encounters a

template, it compiles the template into PHP code and caches it. On each request, the

cached PHP code will run to render the output document. We provide a preprocessor that

is invoked by Smarty before it compiles each template. Our preprocessor inserts PHP code

that replaces static XML namespace prefixes with randomly generated prefixes each time

the document is rendered. The process is depicted in Figure 2.9.

To preserve the semantics of the generated document, we map each static prefix to a

random prefix bound to the same namespace URI as the static prefix (note that different

prefixes may be bound to the same URI or the same prefix may be bound to different URIs

at different points in the document). However, since the Smarty (and also our NSmarty)

language is Turing-complete, it is infeasible to determine the scope of each static prefix at

compile time. This implies that it is also infeasible to determine the URI that each static

prefix represents. Therefore, we map each unique static prefix to a unique random prefix.
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Figure 2.9: Implementing Noncespaces within Smarty. This figure illustrates the operation
of our modified Smarty template engine.

If the original document without prefix randomization is well-formed and all XHTML

appearing in dynamic content is well-formed, the new document with prefix randomization

will also be well-formed and will be semantically equivalent to the original document. If

dynamic content contains non-well-formed XHTML, our prefix randomization algorithm

may create non-well-formed documents. We prevent this from occurring by verifying that

each document remains well-formed after prefix randomization.

Figures 2.1 and 2.4 show an original XHTML template and the rendered document

after prefix randomization, respectively. Algorithm 2 shows the pseudocode for prefix
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Algorithm 2: XML Namespace Prefix Randomization Algorithm. This algorithm
prepends randomly chosen prefixes to all static XML elements and attributes within
a document.

Input : An XML document d
Output: The document d after prefix randomization
begin1

for Tag t ∈ d do2

for Attribute a ∈ t do3

if a is a namespace declaration then4

if map[a.prefix] is not defined then5

map[a.prefix] = random()6

a.prefix = map[a.prefix]7

else if a.value is static (i.e. containing no template tag) then8

a.prefix = map[a.prefix]9

10

t.prefix = map[t.prefix]11

end12

randomization.

Because NSmarty takes advantages of XML namespaces, the server should serve Non-

cespaces documents with the application/xhtml+xml content type. Serving the docu-

ment as XML provides other benefits, discussed below.

2.4.2 Client Implementation

The client validates each document against its policy before rendering to ensure safety.

We implemented our policy validator as a client-side proxy that mediates communication

between the browser and the server. Our proxy forwards requests from the web browser to

the appropriate server. When it receives a Noncespaces encoded response from the server,

the proxy attempts to validate the document against the specified policy. If the document

conforms to the policy, the proxy forwards it to the client. If the document violates the
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policy, fails to parse, or some other error occurs, such as the policy being malformed

or inaccessible, the proxy returns an error document indicating the problem to the web

browser.

We chose a proxy implementation to provide a rapid proof of concept and incremental

deployability for any browser that supports the use of an HTTP proxy. Also, until adop-

tion of Noncespaces is sufficiently widespread, a Noncespaces enabled server can protect

incompatible clients by employing our proxy in a reverse proxy configuration. Using Non-

cespaces in this configuration is reminiscent of SWAP [116] and is subject to shortcomings

we outline in Section 2.6.

Performing policy validation in a proxy, instead of within the browser, has several dis-

advantages. Using a proxy increases the response latency experienced at the browser. Also,

because the policy validator does not have access to the browser’s DOM, parsing differ-

ences between the validator and the browser may provide opportunities for attack. Our

NSmarty implementation targets XHTML served as application/xhtml+xml to help

mitigate this problem. The stricter parsing requirements of XML means that the proxy

is less susceptible to parsing ambiguities than would be the case with HTML. We do not

view requiring XHTML 1.0 compliance as a shortcoming of our prototype. Most modern

browsers (with the notable exception of Microsoft Internet Explorer) are XHTML compli-

ant. The restrictions imposed by XHTML are not onerous; they merely require documents

to follow a simple, well-defined format. However, the prefix randomization technique that

we have presented has one subtle incompatibility with XHTML that is easy to work around.

While some browsers (such as Opera [80]) understand XHTML attributes that have been

qualified with a prefix bound to the XHTML namespace, XHTML Modularization 1.1 [5]

specifies that most XHTML attributes should not be qualified. For browsers that do not

33



support qualified attributes, we can use a client-side JavaScript stub to unqualify attributes

randomized by Noncespaces after the document has been validated.

2.4.3 Policy Training Mode

In order to protect any web application effectively, Noncespaces requires a security pol-

icy. To create a whitelist policy manually, a policy developer must enumerate all outputs

that should be permitted by the policy. This can be difficult for web applications with a

significant amount of dynamic content. The developer can either attempt to statically infer

all possible outputs from the application source or she can run the application in order to

observe possible outputs. Achieving completeness is a challenge with either approach. The

Turing-completeness of common template languages can make it impossible to statically

determine all possible outputs. Likewise, output observed from running an application will

not reflect any application features not exercised by the developer.

Even given a complete view of application output, the developer must write rules which

accurately capture permitted outputs and then test the web application with the resulting

policy to ensure that the policy is general enough to allow full use of the web application.

Whenever a policy violation is encountered the developer must either modify the policy to

allow the offending document structure or modify the web application to conform to the

existing policy. Performing these actions by hand can be very tedious and time consuming.

To facilitate rapid policy development, we have implemented a training mode for our

client-side proxy that helps the developer create a whitelist policy for their application

by automating many of these steps. The developer provides a seed policy, an incomplete

policy that they would like to serve as a basis for the policy generated by our training sys-

tem. The developer then exercises web application functionality in a trusted environment
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to provide a reasonably complete view of the web application output. Whenever the proxy

encounters a document node that is not permitted under the current policy, it generates a

rule to allow that node and adds it to the current policy. In this way, when the developer

finishes exercising the full-range of application functionality, the proxy can return a policy

allowing all of the content encountered. This combines, into a single activity, the separate

steps of determining possible application outputs, writing rules to permit them, testing the

policy, writing rules to remedy incompleteness, and subsequent re-testing of the policy.

Beginning training from a seed policy allows a policy to be incrementally updated after

changes are made to the application by supplying the current policy as the seed policy

and re-running the application test suite. An empty seed policy corresponds to a deny by

default policy and rules will be generated to allow every document node encountered.

Exercising the application can be automated by running existing functionality and qual-

ity assurance tests in an integration testing environment. If automated tests aren’t available,

the developer can manually interact with the web application. Common test automation

tools [90, 93] can be used to create an automated test suite from a one-time manual inter-

action.

When the proxy encounters content not permitted by the policy, it must derive policy

rules to allow the content. This is safe because training occurs in a trusted environment.

Therefore, the output will not contain any malicious content. When creating a rule to

remedy a policy violation, our system must make a tradeoff between being too restrictive

and too permissive. If our system attempted to find a maximally-restrictive set of rules

allowing only observed behavior, the learned policy would prohibit legitimate outputs not

seen during training. Instead our training mode generates simple rules allowing the node in

question to appear anywhere in the document. The generated rules must be reviewed by the
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developer to ensure that they conform to the intended security policy. We believe that this

is an acceptable tradeoff—guidance from the developer is already necessary because our

system cannot know the developer’s intended security policy. In practice, we find that the

training mode allows us to quickly derive a policy that permits large classes of innocuous

XHTML content while highlighting security-sensitive content that was not present in the

stub policy.

2.4.4 Deployment

It is easy to retrofit existing web applications with Noncespaces. The developer writes an

appropriate policy and, when necessary, revises the Smarty templates such that they are

also valid NSmarty templates.

If the developer wishes to enforce a static-dynamic policy, where all static content in

the Smarty template is trusted and all dynamic content is untrusted, no further modification

is necessary. Noncespaces will randomize all the static namespace prefixes. Because no

namespace prefixes in the dynamic content will be randomized, they cannot invoke any

capabilities reserved for trusted content.

2.5 Evaluation

To evaluate the effectiveness and overhead of Noncespaces we conducted several exper-

iments. We evaluated the security of Noncespaces to ensure that it is able to prevent a

wide variety of XSS attacks. We also measured the performance overhead imposed by

Noncespaces from both the client’s and server’s points of view.
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2.5.1 Security

TikiWiki Case Study

We tested Noncespaces against six XSS exploits targeting two vulnerable applications. The

exploits were crafted to exhibit the various forms that an XSS attack may take [109]. The

applications used in this evaluation were a version of TikiWiki [106] with a number of XSS

vulnerabilities and Trustify, a custom web application that we developed to cover all the

major XSS vectors.

We began by developing policies for each application. Because TikiWiki was devel-

oped before Noncespaces existed, it illustrates the applicability of Noncespaces to existing

applications. We implemented a straightforward 37-rule, static-dynamic policy that al-

lows unconstrained static content but restricts the capabilities of dynamic content to that

of BBCode (similar to Figure 2.7). We also had to add exceptions for trusted content that

TikiWiki generates dynamically by design, such as names and values of form elements,

certain JavaScript links implementing collapsible menus, and custom style sheets based on

user preferences.

For Trustify, our custom web application, we implemented a policy that does not

take advantage of the static-dynamic model. Instead, the policy shown in Figure 2.10

takes advantage of Noncespaces’s ability to thwart node splitting attacks to implement an

ancestry-based sandbox policy similar to the noexecute policy described in BEEP [48].

This policy denies common script-invoking tags and attributes from any namespace (e.g.,

<script> and onclick) that are descendants of a <div> tag with the class="sandbox"

attribute. (Note: the policy does not attempt to be exhaustive. It does not enumerate non-

standard browser-specific tags and attributes.) To allow the rules to apply to elements and
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attributes in any namespace we use the common XPath idiom of matching by each node’s

local-name().

1 trustclass unclassified
2

3 # Blacklist of script-invoking XHTML 1.1 nodes
4 deny //*[local-name() = ’div’ \
5 and @*[local-name() = ’class’ and . = ’sandbox’]]\
6 //*[local-name() = ’script’]
7 deny //*[local-name() = ’div’ \
8 and @*[local-name() = ’class’ and . = ’sandbox’]]\
9 //@*[ local-name() = ’onload’ or local-name() = ’onunload’ \

10 or local-name() = ’onclick’ or local-name() = ’ondblclick’ \
11 or local-name() = ’onmousedown’ or local-name() = ’onmouseup’ \
12 or local-name() = ’onmouseover’ or local-name() = ’onselect’ \
13 or local-name() = ’onmouseout’ or local-name() = ’onfocus’ \
14 or local-name() = ’onblur’ or local-name() = ’onkeypress’ \
15 or local-name() = ’onkeydown’ or local-name() = ’onkeyup’ \
16 or local-name() = ’onsubmit’ or local-name() = ’onreset’ \
17 or local-name() = ’onmousemove’ or local-name() = ’onchange’ \
18 or (local-name() = ’href’ \
19 and starts-with(ns:tolower(normalize-space(.)), \
20 "javascript:")) \
21 or (local-name() = ’src’ \
22 and starts-with(ns:tolower(normalize-space(.)), \
23 "javascript:"))]
24

25 # Allow everything else
26 allow //*
27 allow //@*
28 allow //namespace::*

Figure 2.10: Example Sandbox Policy. This ancestry-based sandbox policy prohibits po-
tential script-invoking tags and attributes that are descendants of a <div> node with the
class="sandbox" attribute.

For each of the exploits we first verified that each exploit succeeded without Nonces-

paces enabled. We then enabled Noncespaces and verified that all exploits were blocked
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as policy violations.

LifeType Case Study

To gain more insight into the work involved in porting existing applications to Nonces-

paces, we ported LifeType, a popular blog application, to work with Noncespaces. Life-

Type is a mature, full-featured blog application consisting of 155K lines of PHP and

XHTML code. Enabling Noncespaces required changes to only 180 lines of code. The

majority of code changes occurred in LifeType’s HTTP header handling. These changes

were necessary because Noncespaces needs to include its own headers before any content

is sent to the client.

We developed a static-dynamic policy for LifeType that attempts to restrict untrusted

content to a minimal set of capabilities. Using our proxy’s training mode, it took approxi-

mately 4 hours to exercise a significant portion of LifeType’s functionality and to manually

refine generated rules that were overly general. We then went through our functionality

exercise again to ensure that we did not prohibit any legitimate behavior.

To test the effectiveness of our LifeType policy, we introduced XSS vulnerabilities into

the application. We used the XSS Cheat Sheet [89] to craft 100 XSS exploits. We then

tested each exploit in Opera 9.276 Before applying Noncespaces, 50 of the exploits were

successful. The remaining 50 exploits were unsuccessful against Opera because they ex-

ploit functionality unique to some other browser (such as executing JavaScript by invoking

the mocha: protocol scheme present in older Netscape versions). After we applied Nonces-

paces, Noncespaces blocked 98 of the 100 exploits as either policy violations or XHTML

parsing errors. These results give us confidence in our policy’s ability to recognize exploits

6We used Opera for our evaluation due to its native support for namespace qualified attributes.
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Total
Exploits

Failed Exploits Successful
ExploitsBlocked by

Noncespaces
Incompatible
with Browser

Without Noncespaces 100 - 50 50
With Noncespaces 100 98 2 0

Table 2.1: Security Analysis Results. This table summarizes the results of our security
analysis of Noncespaces-enabled LifeType using a policy developed with our new training
mode.

while allowing intended behavior and in Noncespaces’s ability to block exploits that target

multiple browsers. Since Noncespaces processes exploitable web pages before the brow-

ser renders them, many exploits that would have been incompatible with the browser were

blocked by Noncespaces before they reached the browser. Neither of the two exploits that

were not blocked resulted in a successful XSS attack: one was rendered as text, the other

as a comment. That neither exploit caused a policy violation does not indicate a limitation

of our approach. Our browser-agnostic prototype proxy implementation targets XHTML

compliant browsers, as discussed previously. Neither exploit was valid XHTML.

The latter exploit is an Internet Explorer conditional comment [72]. XHTML compli-

ant browsers will render the comment as a comment and ignore its contents. However,

Internet Explorer interprets the comment as HTML code if the specified conditions are

met. This exploit illustrates how non-standards-compliant behavior can lead to security

vulnerabilities and confirms our preference for eventual in-browser implementation. Only

a Noncespaces-aware browser can ensure complete mediation—that all content interpreted

as HTML code is checked for conformance to the policy. Table 2.1 summarizes the results.
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2.5.2 Performance

Our performance evaluation seeks to measure the overhead of Noncespaces in terms of

response latency and server throughput. Our test infrastructure consisted of the applications

that we used for our security evaluation running in a VMware virtual machine with 512 MB

RAM running Fedora Core 3, Apache 2.0.52, and mod php 5.2.6. The virtual machine ran

on an Intel Pentium 4 3.2 GHz machine with 1 GB RAM running Ubuntu 7.10. Our client

machine was an Intel Pentium 4 2 GHz machine with 256 MB RAM running Ubuntu 8.10

Server. These results represent an upper bound on performance penalty as we have spent

no effort optimizing our Noncespaces prototype. In each test we used ab [1] to retrieve an

application page 1000 times. We varied the number of concurrent requests between 1, 5,

10, and 15, and the configuration of the client and server between the following:

• Baseline: measures original web application performance before applying Nonces-

paces.

• Randomization Only: measures impact of Noncespaces randomization on server

without policy validation on client-side.

• Full Enforcement: measures the end-to-end impact of Noncespaces.

We ran three trials with each test configuration against both the TikiWiki and LifeType

applications.7 We report the mean, median, and standard deviation of results over all trials.

The server virtual machine was rebooted between tests. The target page was prefetched

once before the test to warm up the systems’ caches to prevent any one-time costs (such

7We do not report performance results for Trustify. We developed Trustify for our security evaluation to
exhibit all forms of XSS vulnerability vectors. It is not representative of realistic web application workloads.
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as compiling the NSmarty templates) from skewing our results. Our results are shown in

Figures 2.11 and 2.12.

1 5 10 15

Response Times for Lifetype

# of concurrent requests

T
im

e
 (

s
)

0
5

1
0

1
5

2
0

2
5

3
0

3
5

 0
.0

9
 0

.0
7

 0
.1

3

 5
.8

9
 6

.5
4

 3
.4

8

1
0

.8
1

1
2

.1
9

1
0

.3
1 1

2
.8

9
1

6
.5

3
1

6
.9

9

1 5 10 15

Response Times for TikiWiki

# of concurrent requests

T
im

e
 (

s
)

0
5

1
0

1
5

2
0

2
5

3
0

3
5

0
.1

7
0

.1
8

0
.1

9

0
.8

8
0

.8
8

0
.9

3

1
.6

9
1

.7
6

1
.7

8

2
.7

0 2
.6

0
2

.3
0

Baseline Randomization Only Full Enforcement

Figure 2.11: Response times for Noncespaces-enabled LifeType and TikiWiki applica-
tions. Response times are grouped by the number of concurrent requests. Bars depict the
mean value, asterisks the median, and the vertical line segments show the mean plus or
minus the standard deviation. The value of the standard deviation is shown by label above
each line segment.

The graphs of response latency show that enabling Noncespaces randomization on the

server increased response time by (at most) 14% for TikiWiki and 20% for LifeType. En-

abling the policy checking proxy resulted in response times that were (at most) 32% higher

than the baseline response time for TikiWiki and 80% higher for LifeType. Though the
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Figure 2.12: Throughput for Noncespaces-enabled LifeType and TikiWiki applications.
Throughput rates are grouped by the number of concurrent requests. Bars depict the mean
value, asterisks the median, and the vertical line segments show the mean plus or minus
the standard deviation. The value of the standard deviation is shown by label above each
line segment.

overhead may appear significant at first glance, during interactive use latency typically

increased by no more than 0.6 seconds.

We also examine the effect of Noncespaces on server throughput. With randomization

enabled throughput is reduced by about 10% for TikiWiki and 20% for LifeType. After

enabling policy checking, the throughput of both TikiWiki and LifeType decreases by an

additional 3% for higher numbers of concurrent requests. Because policy checking is per-
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formed on the client side the effect of policy checking on server throughput is minimized

when multiple clients make requests simultaneously.

2.6 Related Work

Given the high impact of XSS attacks, there is a significant amount of related work. Here

we attempt to compare our work with a sampling of other relevant work.

Randomization Our work was inspired by Instruction Set Randomization (ISR) [49, 7]

— a technique for defending against code injection attacks in executables by randomly

remapping a computer’s instruction set architecture. SQLrand [15] first employed ran-

domization to defeat SQL Injection attacks. Noncespaces is an analogous approach that

protects web applications from Cross-Site Scripting attacks. ISR and SQLrand prevent

an attacker from injecting meaningful code and SQL keywords by forcing an attacker to

guess a random mapping. Noncespaces also forces an attacker to guess a random map-

ping in order to inject trusted content. ISR and SQLrand consider static program code and

SQL queries trustworthy. Similarly, our prototype considers all static (X)HTML template

content to be trustworthy. Unlike ISR or SQLrand, Noncespaces must support web applica-

tions which permit rich user input. Therefore, Noncespaces expands the ISR approach by

using a configurable policy to constrain the capabilities of untrusted content on the client

side.

Preserving Document Structure Integrity Document Structure Integrity (DSI) [75]

was developed independently and contemporaneously with our work. Each system has

advantages over the other in different areas. Like Noncespaces, DSI uses randomized de-
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limiters to allow a web browser to distinguish between trusted and untrusted content. In

DSI, the server identifies untrusted content using a prototype taint tracking implementation

for PHP. The browser enforces a simple policy that limits untrusted content to terminals

in (X)HTML and JavaScript and to tags and attributes whitelisted on a per-page basis.

DSI also augments the browser with information flow tracking in order to defeat DOM-

based (Type III) XSS attacks. Noncespaces’s policy language is more expressive than the

policy language provided by DSI. DSI’s policy language does not capture the position of

whitelisted elements or provide an ability to constrain terminal values. Both of these ca-

pabilities are important for defeating injection of non-script elements. In many scenarios,

non-code injection attacks can be just as dangerous as code injection attacks [25]. For in-

stance, an attacker can steal login credentials by injecting a fake login form onto a bank’s

website. The whitelisting approach employed by Noncespaces is superior to the blacklist-

ing approach employed by DSI (called “minimal-serialization”) insomuch as it respects the

Principle of Fail-Safe Defaults. If the classification mechanism is incomplete, Noncespaces

would classify trusted data as untrusted and therefore might refuse to render a legitimate

page, but DSI would classify untrusted data as trusted, resulting in security vulnerabilities.

Before Noncespaces and DSI, work on ensuring document structure integrity typically

focused on ensuring that output documents were valid [51] and that web designers would

not inadvertently print unsanitized output to the browser [41]. However, neither approach

is sufficient to mitigate XSS attacks.

The Noncespaces and DSI approach of defeating XSS by ensuring document structure

integrity has appeared in subsequent research. Blueprint [102] provides a DSI-like terminal

confinement and no script policy mechanism for unmodified modern browsers. An applica-

tion developer manually annotates all web application statements that output untrusted con-
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tent. Untrusted content will then be transmitted to the browser where client-side JavaScript

ensures that it cannot invoke the JavaScript interpreter. By contrast, Noncespaces does

not require the developer to manually identify and modify untrusted output statements.

Noncespaces integrates with the Smarty template engine, allowing it to intercept all un-

trusted template outputs automatically. Because Blueprint only encodes untrusted content,

incomplete sanitization can result in successful XSS attacks. Noncespaces encodes trusted

data to ensure that any failure of complete mediation will not result in a successful attack.

Noncespaces also provides a significantly more flexible policy mechanism.

SWAP [116] takes a complementary approach on the server-side — it attempts to

whitelist all trusted scripts. SWAP identifies all static scripts and replaces them with non-

executable script identifiers. Before delivering the response to the browser, SWAP invokes

a server-side script detector (consisting of a browser residing on the server) to determine

if any scripts have been injected. If no scripts are detected, the script identifiers in the

response are replaced with the original scripts and the response is delivered to the client.

Both Blueprint and SWAP incur higher server-side overheads than Noncespaces because

they perform all policy enforcement on the server, preventing clients from sharing the com-

putational burden. Noncespaces’s client-side enforcement also allows for the possibility of

browser or user contributed policies. Also, like DSI, Blueprint and SWAP do not defend

against non-script attacks.

Alhambra [101] is a pragmatic approach to ease deployment of a document structure

integrity system. It is an entirely client-side mechanism that attempts to infer a document

structure integrity policy from multiple web page visits. Client-side information flow track-

ing is also employed to prevent DOM-based XSS attacks and certain common script abuse

patterns. Alhambra’s learning capabilities can be compared to a more advanced rendition

46



of Noncespaces’s training mode. Greater learning algorithm intelligence is necessary for

Alhambra because, unlike the training environment in Noncespaces, the resulting policy

is not reviewed by an expert before being employed to defend against attacks. Alham-

bra’s client-side only approach imposes several additional challenges including the ability

of a malicious attacker to mislead the policy learner and attempting to remain robust to

legitimate website modifications.

Robertson and Vigna present another approach for ensuring the structural integrity of

a document by defining a strongly-typed web application framework [87]. Instead of gen-

erating unstructured strings, applications output an Abstract Syntax Tree. The AST is then

translated by a trusted renderer which ensures that all content incorporated into document

terminals is correctly escaped. This prevents attacks which rely on violating the docu-

ment’s structural integrity. In addition to defeating attacks that violate structural integrity,

Noncespaces goes one step further by protecting against attacks which leverage unsafe at-

tribute values and vulnerabilities caused by web applications that permit an untrusted user

to create security sensitive structural content.

Client-side Policy Enforcement Client-side policy enforcement mechanisms enforce a

security policy in the browser to avoid the semantic gap between the client and server.

BEEP [48] allows a server-specified JavaScript security handler to decide whether to permit

or deny the execution of each script based on a programmable policy. The BEEP authors

present two example policies: an ancestry-based sandbox policy, which prohibits scripts

that are descendants of a sandbox node, and a whitelist policy, which allows a script to

execute only if it is known-good. Mutation Event Transforms [37] extend the mechanism of

BEEP to all operations that modify the DOM. Before each DOM modification, a JavaScript
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callback is invoked that can allow, deny, or arbitrarily change the operation performed.

Noncespaces is similar to both of these approaches in that the server delivers a policy

that the client enforces. Like BEEP, our policy language is able to express both ancestry-

based sandbox and whitelist policies. Additionally, like Mutation Event Transforms, our

policy language is also able to express policies which constrain non-script content of a

web page. This is important because, as mentioned above, malicious non-script content

can successfully exploit security vulnerabilities. It would have been possible to leverage

Mutation Event Transforms as our client-side policy mechanism. However, giving poli-

cies the full power of JavaScript would make it hard to reason about a policy’s effects and

could also provide a new vector for bugs and vulnerabilities to be introduced. This is why

our client-side policy language consists of simple rules that match nodes and attributes in

the DOM and declare whether they should be allowed or denied. We also note that the

main contributions of our work are a mechanism for reliably communicating trust infor-

mation from server to client and leveraging properties of the web application to determine

trustworthiness of content automatically. Neither BEEP nor Mutation Event Transforms

addresses these issues.

Noncespaces is also closely related to Content Restrictions [66], Mozilla’s Content Se-

curity Policy (CSP) [98], Script Keys [65], and Brendan Eich’s proposed <jail> tag [36].

Content Restrictions allow the server to specify certain restrictions on the content that it

delivers, such as: whether scripts may appear in the document body, header, only exter-

nally, or not at all; which hosts resources may be fetched from; which hosts scripts may

be fetched from; etc. Mozilla’s Content Security Policy is an implementation of Content

Restrictions for Firefox with some additional features. Noncespaces client-side policies

are able to specify most of the same restrictions as Content Restrictions and CSP. CSP
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provides a few features outside the domain of Noncespaces. However, Noncespaces can

prevent malicious content from attacking trusted origins or exfiltrating data to untrusted

domains via forms and links, but CSP cannot. Content Restrictions and CSP also do not

provide a mechanism for differentiating between server-trusted content executing a script

in an approved location or injected content doing the same. Both Script Keys and Nonces-

paces provide a way to differentiate between the two scenarios.

Script Keys prohibits scripts from running unless they include a server-specified key in

their source. The proposed <jail> tag does just the opposite: it prohibits active content in

the document subtree below it and uses a nonce embedded in the opening and closing tags

to prevent a node-splitting attack from closing a <jail> tag prematurely. In the limit, when

the script key is changed on every page load, Script Keys behaves like Noncespaces — the

attacker must guess the randomly generated key for each request to enable their script to

run. To an extent, Noncespaces can be seen as the first implementation of Content Restric-

tions, Script Keys, and the <jail> tag. However, none of these other proposals provide a

means to restrict non-script content with the same level of precision as Noncespaces. Non-

cespaces and CSP may be useful in conjunction with one another allowing specification of

policy constraints at the most natural layer.

ConScript [71] enables client-side policy enforcement for JavaScript code by providing

an Aspect Oriented Programming model for JavaScript. Noncespaces’s client-side policy

enforcement and ConScript are orthogonal. Noncespaces determines whether or not a tag

or attribute should be added to the DOM. ConScript constrains the behavior of scripts after

that point. ConScript also only effects the execution of scripts and thus does not help

defend against non-script attacks.
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Prohibiting Anti-Patterns Two main goals of XSS attacks are stealing the victim user’s

confidential information and invoking malicious operations on the user’s behalf. Noxes

provides a client-side web proxy to block URL requests by malicious content using manual

and automatic rules [50]. Vogt et al. track the flow of sensitive information in the browser

to prevent malicious content from leaking such information [112]. Both of these projects

defeat only the first goal of XSS attacks. By contrast, Noncespaces can defeat both goals of

XSS attacks because it prevents malicious content from being rendered. Internet Explorer

8’s XSS filter [88] attempts to prevent reflected XSS attacks by disabling scripts that embed

certain substrings seen in an outgoing request. This only prevents reflected XSS attacks

while Noncespaces is also able to prevent stored XSS attacks. Attackers have also been

able to leverage the semantic gap between the server and the client to cause IE 8’s XSS

filter to create new security vulnerabilities [77] illustrating the need for and end-to-end

solution such as Noncespaces.

Leveraging Language Techniques SQLCheck [100] defines a sub-language of SQL that

untrusted user input can safely express. In theory, the same approach can be employed

to prevent XSS attacks; however, specifying an appropriate subset of (X)HTML is more

difficult because web application security policies cut across multiple languages (including

JavaScript, URIs, and CSS), can depend on position in the document hierarchy, and may

depend on specific terminal values. Therefore, we believe that expressing a policy in terms

of XPath expressions is more straightforward for web developers than modifying a unified

grammar for web pages in order to restrict untrusted input to a suitably safe subset for each

web application.
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Static Analysis Numerous papers [114, 115, 117, 60] have employed static program

analysis to detect XSS vulnerabilities. Static analysis approaches cannot be both sound and

complete, forcing a choice between false positives or missed vulnerabilities. By favoring

a dynamic analysis approach, Noncespaces avoids loss of precision due to round-trips to

the browser and difficult to support PHP features. Our use of NSmarty to determine trust

classifications is a conservative approximation; however, if greater precision is needed, our

technique can be integrated with a full information flow tracking system.

Information Flow Tracking A number of different information flow (or taint) tracking

solutions for web applications have appeared in the literature [78, 111, 118]. Unfortunately,

none of the solutions for PHP have seen widespread use. This prompted our development

of NSmarty to simply and conservatively approximate information flow by leveraging a

common web application programming paradigm. The encoding and client-side policy

enforcement mechanisms that Noncespaces provides can use a mature information flow

tracking system as a content classifier, when one arises.

A preliminary version of this work was presented at NDSS 2009 [109]. Since then we

have extended the policy language to support hierarchical trust classes and XML name-

space-specific policy rules, which are important for handling real-world web applications.

During the research for [109], we found that it could be difficult to create complete policies

for large web applications. Therefore, we have implemented a training mode to facilitate

policy development (Section 2.4.3). Finally, to demonstrate the effectiveness, usability, and

backward compatibility of Noncespaces, we ported a large web application to Noncespaces

and conducted a more extensive security evaluation using a policy developed with our new

training mode (Section 2.5.1).
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Chapter 3

Multi-party Off-the-Record Messaging

3.1 Motivation

In contrast to traditional thick-client applications, modern web application architectures

typically require the web server to be fully trusted. The web server delivers the software

which runs in a user’s browser on-demand, giving users little ability to control changes

in or verify the integrity of the client-side application. In situations where users require

end-to-end security guarantees, that is, intermediate servers are not trusted, peer-to-peer

or traditional client-server applications running specialized protocols are common. The

Internet has popularized a novel means of communication, instant messaging (IM), where

users can engage in interactive conversations across great distances. However, common IM

protocols lack certain fundamental security properties that a physical private conversation

can provide. Impersonation, eavesdropping and information copying are all trivial attacks

over IM making it unsuitable for sensitive conversations.

Online communication systems commonly provide three properties: confidentiality,
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authentication and non-repudiation. Confidentiality and authentication are expected traits

of face-to-face conversations, but non-repudiation clashes with the expectations for private

communication. Non-repudiation denotes a receiver’s ability to prove to a third party,

possibly a judge, that the sender has authored a message. Although desirable under many

circumstances, non-repudiation is the very property journalists, dissidents or informants

wish to avoid. [45, 47, 38]

Borisov, Goldberg and Brewer [13] argued that instant messaging should mimic casual

conversations. Participants of a casual talk can deny their statements in front of outsiders,

and can sometimes deny having taken part in the talk at all. The authors presented a mech-

anism called Off-the-Record Messaging (OTR) that allows two-party private conversations

using typical IM protocols. OTR aims to provide confidentiality, authentication, repudia-

tion and forward secrecy, while being relatively simple to employ.

Despite its good design, OTR has limitations, the most important of which is that it

can serve only two users. Hence it is not suitable for online multi-party conversations,

commonly enjoyed by casual users via Internet Relay Chat (IRC), by open-source soft-

ware developers, and by businesses that cannot afford confidential meetings across vast

distances [10, §2.3]. It is non-trivial to extend OTR to allow for multi-party conversa-

tions, as OTR uses cryptographic primitives designed for two parties. For example, OTR

uses message authentication codes (MACs) to provide authenticity. While for two par-

ties MACs can provide a deniable authentication mechanism, MACs do not provide origin

authentication when used by more than two parties.

Bian, Seker and Topaloglu [10] proposed a method for extending OTR for group con-

versation. The crux of their solution is to designate one user as the “virtual server”. While

this may be feasible under certain circumstances, it deviates from the original OTR goal,
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which is to mimic private conversations. In private group conversations there is no virtual

server responsible for smooth meetings. Moreover, the server becomes an enticing target

for malicious parties. Finally, the server has to be assumed honest, as a dishonest server

could compromise both the confidentiality and the integrity of all messages sent during a

chat session.

In this work, we present a multi-party off-the-record protocol (mpOTR), which pro-

vides confidentiality, authenticity and deniability for conversations among an arbitrary

number of participants. Using our protocol, an ad hoc group of individuals can com-

municate interactively without the need for a central authority. We identify the important

traits of multi-party authentication for users, for messages and for chatrooms that share

users; that is, we take into account that two or more users may concurrently share more

than one chatroom with different peers. When considering privacy properties, we allow

malicious insiders and identify their goals. These multi-party chatroom properties present

new challenges that were not addressed in previous work.

An OTR transcript reveals that a user at some point communicated with someone. Our

mpOTR protocol carries deniability further by allowing the user to deny everything except,

by virtue of being part of the system, that they were willing at some point to engage in a

conversation. In fact, it is unclear how users can deny the latter at all because by using

the Internet, they already indicate their intent and ability to engage with others. In this

sense, mpOTR is closer than OTR to simulating deniability in private conversations in the

physical world: anyone could take or have taken part in a private conversation, but that

person can plausibly deny ever having done so.
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3.1.1 Related work

While not the first to address security in instant messaging, Borisov, Goldberg, and

Brewer [13] popularized its privacy aspects, partly due to their now-popular open-source

plug-in. Subsequently, more research was devoted to IM; in fact, the original proposal was

found to contain errors [33], which were repaired in a subsequent version of OTR.

On a high level there are two approaches to secure IM. Clients can establish their con-

nections via a centralized server and rely on the server for security and authentication [64].

Alternatively, participants can use shared knowledge to authenticate each other [2]. OTR,

which aims to simulate casual conversations, is closer to the second solution.

While there is a wide literature on IM (see [63, §2.1] for an extensive list), little research

has focused on the multi-party privacy aspects of instant messaging. To our knowledge,

before this work the only published work with the explicit goal of achieving group off-

the-record conversations is the aforementioned result by Bian, Seker and Topaloglu [10].

It has traits of Mannan and Van Oorschot’s work on two-party IM [64] in the sense that

a designated user acts as a server. In some cases, e.g. the Navy [26], it may be easy to

establish a superuser whom everyone trusts, but if the goal is a casual off-the-record chat

or users are unwilling to trust each other, agreeing on a server user becomes problematic.

We adopt the scenario where all users are equal.

3.1.2 Outline

In §3.2 we identify the relevant properties of private meetings and how they apply to IM.

§3.3 describes the different players of our model for private communication; we focus on

the different adversaries and their goals. §3.4 outlines our solution at a high level and shows
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that we have achieved the goals of private conversations. Section §3.5 outlines directions

for future work.

3.2 Private chatrooms

3.2.1 Confidentiality

In meetings a user Â is willing to reveal information to chatroom members but not out-

siders. Hence chatroom messages need to remain hidden from the wider community. In

private physical communication, should a new party approach, the participants can “detect”

the newcomer and take appropriate actions.

On the Internet eavesdropping cannot be detected as easily; however, there are ways

to guard against casual eavesdroppers. Cryptographic algorithms can assure parties that

observers looking at the transmitted conversation packets are left in dark about the com-

municated content. That is, the transcript gives an eavesdropper no additional knowledge

above information about lengths of messages and traffic patterns, beyond what the eaves-

dropper could have deduced without having seen the encrypted messages.

3.2.2 Entity authentication

In a face-to-face meeting we identify peers via their appearances and physical attributes.

By contrast, on the Internet a user proves to another user knowledge of some secret identi-

fying information, a process known as entity authentication.

The basic goal of entity authentication is to provide evidence that a peer who presents

public key SB̂ also holds the corresponding private key sB̂. For example, suppose Alice
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provides a challenge to Bob. If Bob can compute a response that can only be computed by

an entity possessing sB̂, then Bob successfully authenticates himself to Alice. This type of

authentication is limited in the sense that Bob only shows knowledge of sB̂. If Bob wants

to claim any further credentials like “classmate Bob”, then Alice would need additional

proofs. Two-party entity authentication has been studied in the setting of OTR by Alexan-

der and Goldberg [2, §4 and §5]; their solution is suitable for pairwise authentication.

The entity authentication goal for mpOTR is to provide a consistent view of chatroom

participants: each chat participant should have the same view of the chatroom membership.

We achieve this goal by first requiring users to authenticate pairwise to each other. Then

users exchange a short message about who they think will take part in the chat. Alterna-

tively, a suitable n-party authentication primitive could be used to authenticate all users to

each other simultaneously.

Authentication is challenging. In a centralized approach, if a malicious party success-

fully authenticates to the server, the security of the whole chatroom is compromised. The

problem is more evident when the server itself is malicious. In our approach, parties do not

rely on others to perform faithful authentication. All parties check to ensure that no party

has been fooled. While we do not provide means to prevent malicious parties from joining

a chat, users can leave a chat if they wish. In other words a malicious party may join a

chat with a given set of honest participants only if all the honest participants approve his

entrance.

3.2.3 Origin authentication

Each message has a well-defined source. The goal of origin authentication is to correctly

identify the source. First of all a user must be assured that the message is sent from some-
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one who legitimately can author messages in the chatroom. In OTR if Alice is assured that

a valid OTR peer sent a message and that peer is not Alice herself, then she knows Bob

sent the message and that only she and Bob know the message1. In mpOTR if both Bob

and Charlie are chat participants, Alice should be able to distinguish messages authored by

Bob from messages authored by Charlie. She should also be able to identify origins with

respect to chatrooms: if Alice and Charlie are both members of chatrooms C1 and C2, then

when Alice receives a message from Charlie in C1, no one should be able to fool her that

the message was sent in C2. In this way Alice is aware of who else sees the message.

Message authentication should be non-repudiable among chat participants in order to

allow honest users to relay messages between one another or to expose dishonest users who

try to send different messages to different parties. Alice should have the ability to convince

Bob, or any other chat member, that a message she accepted from Charlie indeed was

sent by Charlie. A word of caution: transferability introduces a subtlety when combined

with our deniability requirement. Alice’s ability to convince Bob that Charlie authored a

message must not allow her to convince Dave, who is not a chat participant, that Charlie

authored the message.

3.2.4 Forward secrecy

The Internet is a public medium: when a typical user sends a data packet, the user has little

(if any) idea how the packet will reach its destination. To be on the safe side we assume

that the adversary has seen and recorded every transmitted packet for future use. The

adversary’s ability to see messages motivates encryption; his ability to record messages

motivates forward secrecy. Forward secrecy implies that the leakage of static private keys

1We assume no “over-the-shoulder” attacks.
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do not reveal the content of past communication. Users achieve forward secrecy by using

ephemeral encryption and decryption keys that are securely erased after use and that cannot

be recomputed even with the knowledge of static keys.

We separate encryption keys from static keys. Static keys are used to authenticate

ephemeral data, which is used to derive short-lived encryption keys. This is a common

approach to achieve forward secrecy. Note that this goal is unrelated to deniability: in

forward secrecy the user does not aim to refute any message; in fact, the user may not even

be aware of the malicious behavior. The goal of the adversary is reading the content of a

message as opposed to associating a message with a user.

3.2.5 Deniability

A casual private meeting leaves no trace2 after it is dissolved. By contrast, the electronic

world typically retains partial information, such as logs for debugging, for future reference,

and so on. This contradicts the “no trace” feature of private meetings. As mentioned in the

forward secrecy discussion, entities involved in relaying messages may keep a communi-

cation record: participants do not and cannot control all copies of messages they send and

hence cannot be assured that all copies were securely destroyed. Users can claim the traces

are bogus, effectively denying authoring messages. But what is the meaning of “deny” in

this context?

Not all deniability definitions are suitable for off-the-record communication. Con-

sider for example the plaintext deniability notion proposed in [22], where the encryption

scheme allows a ciphertext author to open the ciphertext into more than one plaintext: Alice

wishes to communicate (possibly incriminating) message M1; she chooses M2, . . . ,Mn non-

2 If there were no logs, wiretapping, etc.
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incriminating messages and then forms the ciphertext as follows:

C = DeniableEncryptK(M1,M2, . . . ,Mn). When challenged to decrypt, Alice can validly

decrypt C to any of the alternate messages Mi that she chose when forming C. Even though

Alice denies authoring the incriminating plaintext, she implicitly admits to authoring the

ciphertext. However, who you speak to may be as incriminating as what you say. Alice

might get into deep trouble with her mafia boss by merely admitting that she has spoken

with law enforcement, regardless of what she said. She would be in a much better situ-

ation if she could claim that she never authored the ciphertext, instead of decrypting the

ciphertext to an innocuous plaintext and thereby implicitly admitting authorship.

Contrary to the above example, suppose Alice has means of denying all her messages in

front of everyone, by arguing that an entity different from herself faked messages coming

from her3. That is, any message purportedly from Alice could have been authored by

Mallory. In that case how could Bob and Charlie have a meaningful conversation with

Alice? They have no assurances that messages appearing to come from Alice are indeed

hers: Alice’s messages can be denied even in front of Bob and Charlie. What we need is a

“selective” deniability. We next discuss the selectiveness of deniability in the requirements

for multi-party Off-the-Record messaging.

Repudiation

The fundamental problem of deniability (FPD) describes the inherent difficulty for a user

Alice to repudiate a statement. Let Justin be a judge. Suppose Charlie and Dave come

to Justin and accuse Alice of making a statement m. In the best-case scenario for Alice,

Charlie and Dave will not be able to provide any evidence that Alice said m, apart from
3For example Alice can pick a symmetric encryption key κ encrypt her message with κ, encrypt κ with

Bob’s public key and send everything to Bob.
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their word. If Alice denies saying m, whom should Justin trust: Charlie and Dave, or Alice?

The voices are two to one against Alice, but it is possible that Charlie and Dave are trying

to falsely implicate Alice. Justin must decide who to believe based on his evaluation of the

trustworthiness of their testimony. Justin’s evaluation may be influenced by many hard-

to-quantify factors, such as perceived likelihood of the testimony, the number of witnesses

in agreement, potential benefits and detriments to the witnesses, etc. Justin may even

explicitly favor the testimony of certain witnesses, such as law enforcement officers. In

the end, Justin must base his decision on weighing the testimonies rather than on physical

evidence. In the limit, when n parties accuse Alice of saying m, Alice will have to convince

Justin that the other n witnesses are colluding to frame her. We call this the fundamental

problem of deniability.

We cannot solve the FPD. The best we can offer is to ensure that Charlie and Dave

cannot present any evidence (consisting of an algorithmic proof) that Alice has said m,

thereby reducing the question of Alice’s authorship to the FPD. In the online world Char-

lie and Dave make their claim by presenting a communication transcript. Therefore, we

provide Alice with means to argue that Charlie and Dave could have created the transcript

without her involvement. As long as Charlie and Dave cannot present an algorithmic proof

of Alice’s authorship, she can plausibly deny m, so Justin has to rule based on the same

factors (e.g., weighing the testimonies rather than on physical evidence) as in the physical

world. By this means, we provide comparable levels of repudiation between on-line and

face-to-face scenarios.

In §3.2.3 we alluded to the conflicting goals of message origin authentication and pri-

vacy, where the complete deniability example prevents origin authentication. To provide

origin authentication, we need a special type of repudiation. Let us look closer at a private
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communication among Alice, Charlie and Dave. In a face-to-face meeting Charlie and

Dave hear what Alice says. This is origin authentication. After the meeting, however, Al-

ice can deny her statements, because, barring recording devices, neither Charlie nor Dave

has evidence that Alice made any specific statement. This is the type of repudiation that

we aim for.

In contrast to the physical world, on the Internet Charlie can differentiate between

Alice and Dave when the three of them are talking and can send them different messages.

While it is impossible to guard against such behavior (either due to malicious intent or

connection problems), we would like the proof of authorship that Charlie provides to Alice

to also convince other chat participants — and no one else — of his authorship. That way,

all parties are assured that (1) they can reach a transcript consensus even in the presence of

malicious behavior, and (2) all statements within the chat can be denied in front of outside

parties. This condition should hold even if Alice and Charlie share more than one chat

concurrently or sequentially: all chats must be independent in the sense that if Alice and

Charlie share chats C1 and C2 any authorship proof Charlie has in C1 is unacceptable in

C2. In relation to the previous paragraph we note that such authorship proofs should also

become invalid at the end of the meeting.

Forgeability

In some cases4 it is valuable to deny not only having made a statement but also having

participated in a meeting. In the physical world Alice can prove she was absent from a

meeting by supplying an alibi. On the Internet, however, such an alibi is impossible as

Alice can participate in multiple chatrooms simultaneously. Short of an alibi, the next

4Police informants, for example.
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best denial is a design where transcripts allegedly involving Alice can be created without

her participation. Although this mechanism would not allow Alice to prove that she was

absent from the meeting, it prevents her accusers from proving that she was present at the

meeting. A refinement is to design transcripts that can be extended to include users that did

not participate, to exclude users who did participate, or both. Effectively, such transcripts

will offer little, if any5, evidence about who participated in it.

For example, suppose Mallory tries to convince Alice that Bob spoke with Dave and

Eve by presenting a transcript with participants Bob, Dave, and Eve. Ideally, forgeability

would allow Bob to argue that Mallory fabricated the transcript even though Mallory is an

outsider with respect to the transcript.

Malleability

While, forgeability allows the creation of valid transcript “out of thin air” without the help

of the purported participants, malleability allows the contents of authentic transcripts to be

denied. Ideally, the transcript should be malleable in the sense that given a transcript T1

and a message m1 that belongs to T1, it is possible to obtain a transcript T2, where message

m1 is substituted with message m2. Along with forgeability this approach provides a strong

case for users who wish to deny statements and involvement in chat meetings. For accusers,

transcripts with this level of flexible modification provide little convincing evidence, even

in the event of confidentiality breaches.

5If the plaintext is recovered, the writing style or statements made may reveal the author’s identity.
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3.2.6 Anonymity and pseudonymity

While in our current work anonymity is not the main goal, we desire that our solution

preserves anonymity. This includes, but is not restricted to, not writing users’ identities on

the wire. While we do not explicitly address it, users may wish to use our protocol over

a transport protocol that provides pseudonymity. If they do so, it would be unacceptable

if our protocol deanonymizes users to adversaries on the network. We do, however, use

anonymity-like techniques to achieve a subset of our deniability goals.

3.3 Threat model

3.3.1 Players

We will first introduce the different players and their relations with each other. The set

of users, denoted by U, is a collection of entities that are willing to participate in multi-

party meetings. Honest parties, denoted by Â, B̂, Ĉ, . . . follow the specifications faithfully;

these parties are referred to as Alice, Bob, Charlie, . . . . Dishonest parties deviate from

the prescribed protocol. Each party Â has an associated long-lived static public-private

key pair (SÂ,sÂ). We assume that the associated public key for each party is known to all

other parties. (These associations can be communicated via an out-of-band mechanism or

through authentication protocols as in [2].) A subset P of users can come together and form

a chatroom C; each member of P is called a participant of C. While honest users follow

the protocol specifications, they may observe behavior that is not protocol compliant due

to either network failures, intentional malicious behavior by other parties, or both.

In addition to users that take part in the conversation we have three types of adversaries:
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(i) a confidentiality adversary, denoted by O; (ii) a consensus adversary, T ; and (iii) a

privacy adversary, M . The last player in the system, the judge J , does not interact with

users but only with adversaries, in particular with M . We will see his purpose when

discussing the adversaries’ goals.

3.3.2 Goals

Honest users wish to have on-line chats that emulate face-to-face meetings. It is the pres-

ence of the adversaries that necessitates cryptographic measures to ensure confidentiality

and privacy.

Confidentiality adversary

The goal of the confidentiality adversary is to learn information about plaintext messages

that he is not entitled to. Let TC1 =
{
TX̂

C1
| X̂ ∈ P

}
be a collection of transcripts resulting

from a chat C1 with set of chat participants P, such that no user in P revealed private6

information to, or collaborated with, the confidentiality adversary O prior to the completion

of C1. Suppose also that for each honest participant Â, who owns TÂ
C1
∈ TC1

7, and for each

honest participant B̂, who owns TB̂
C1
∈ TC1 , Â and B̂ have consistent view of the messages

and participants. We say that O is successful if O can learn partial information8 about at

least one message in some TÂ
C1

without obtaining the message from a user B̂ who owns

TB̂
C1

.

A few remarks on O’s goals are in order. The confidentiality adversary can control

6Either static private keys or C1-related information.
7That is, user Â did take part in C1, and in particular Â ∈ P.
8Partial information in the sense of traditional ciphertext indistinguishability. The adversary should not

be able to distinguish between two unequal plaintexts that do not differ in length, author, or order.
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communication channels and observe the actions of any number of users in P, learn mes-

sages that they broadcast in other chatrooms, and start chatroom sessions with them via

proxy users. All these actions can take place before, during or after C1. However, O is

allowed neither to ask for static private information of any user in P before the completion

of C1 nor to take part in C1 via a proxy user. The adversary may ask an honest user to send

messages to C1, but should still be unable to decide if or when his request is honored. Es-

sentially, O aims to impersonate an honest user during key agreement or to read messages

in a chatroom that consists only of honest users. O’s capabilities are similar to the standard

notion of indistinguishability under chosen-plaintext attack for encryption schemes [8].

Consensus adversary

We first explain the meaning of consensus, which relates to what Alice thinks about her

and Bob’s view of past messages. We say that Â reaches consensus on TÂ
C1

with B̂ if Â

believes that B̂ admits having transcript TB̂
C2

9 such that:

1. C1 and C2 have the same set of participants;

2. C1 and C2 are the same chatroom instance;

3. TB̂
C2

has the same set of messages as TÂ
C1

;

4. TB̂
C2

and TÂ
C1

agree on each message’s origin.

At the end of the meeting (or at predefined intermediate stages) honest users attempt to

reach consensus with each other about the current transcript. Our consensus definition

allows the possibility that Alice reaches a consensus with Bob but Bob does not reach

9By admitting this transcript B̂ admits taking part in C2.
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consensus with Alice: for example if either Bob or Alice goes offline due to network

failure before protocol completion. We also allow the application to interpret “same set of

messages” appropriately for its setting. For instance, the importance of message delivery

order may vary by application.

The goal of the consensus adversary T is to get an honest user Alice to reach consensus

with another honest user Bob on a transcript TÂ
C , while at least one consensus condition

is violated; that is, T wins if (honest) Alice believes that (honest) Bob has a transcript

matching hers (in the above sense), but in fact Bob does not have such a transcript. Note

that while Alice and Bob are honest users there is no restriction on the remaining chat

members — they may even be T -controlled, which is an improvement over KleeQ [84]

where all parties are assumed honest. Resilience against T implies that users cannot be

forced to have different views of exchanged messages and no messages can be injected on

behalf of honest users without being detected.

Our consensus definition captures both the standard notions of entity and origin authen-

tication and the adversary’s abilities to make conflicting statements to different participants

in the same chat session (as described in §3.2.5) as well as to drop, duplicate, reorder, and

replay messages from other chat sessions.

Privacy adversary

The goal of the privacy adversary M is to create a transcript TÂ
C1

to convince the judge J

that Â took part in C1 and/or read and/or authored messages in TÂ
C1

. The only restriction is

that J is not directly involved in C1. This is perhaps the hardest adversary to guard against

as M has few restrictions: M can interact in advance with J before C1 is established and,

by taking part in C1, can obtain consensus with respect to Â. Furthermore, the judge can
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force Â as well as all other participants to reveal their long-term secrets. If under such a

powerful adversary and judge combination, Alice can still plausibly deny TÂ
C1

, then many

of her privacy concerns can be assuaged. Our privacy requirement is stronger than the

settings presented in [34, 35] because J must not be able to distinguish between Alice’s

transcripts and forgeries even if J gets Alice’s long-term secrets.

3.3.3 Local views

We complete the section by saying that from an honest user’s perspective it is unclear a

priori whether an honestly behaving user has no malicious intent. Conversely, if a user

observes deviation from the protocol the user cannot always distinguish a true malicious

player from network instability. (Certain deviations, such as a participant making conflict-

ing statements, can be identified, however.)

3.4 Solution design

The mpOTR protocol follows a straightforward construction. To ensure confidentiality

among the participants P1 of a chatroom C1 the participants derive a shared encryption key

gk1. Messages sent to the chatroom are encrypted under gk1 to ensure that only members

of P1 can read them. To provide message authentication, each participant Â ∈ P1 generates

an ephemeral signature keypair (EÂ,1,eÂ,1) to be used only in the current session. Each

message sent by Â will be signed under Â’s ephemeral signing key for the current session

eÂ,1. Participants exchange ephemeral public keys for the current session EX̂ ,1 (X̂ ∈ P1)

amongst themselves in a deniable fashion. At the end of the session, each participant

publishes their ephemeral private key eX̂ ,1 (X̂ ∈ P1) for the current session to allow third
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parties to modify and extend the chatroom transcript.

The mpOTR protocol lifecycle consists of three phases: setup, communication, and

shutdown. In the setup phase all chatroom participants negotiate any protocol parameters,

derive a shared key, generate and exchange ephemeral signing keys, and explicitly authen-

ticate all protocol parameters including the set of chatroom members and the binding be-

tween participants and their ephemeral signature keys. During the communication phase,

participants can send confidential, authenticated, deniable messages to the chatroom. To

end a chatroom session, the protocol enters the shutdown phase. In the shutdown phase,

each participant determines if he has reached consensus with each other participant, after

which participants publish their ephemeral private keys.

Waiting until the end of a chat session to detect violations of consensus is less than

ideal. It would be preferable if, at each point in time during the conversation, honest partic-

ipants could determine a useful lower bound on consensus over the chat transcript up to that

point. However, ensuring incremental consensus in an asynchronous network protocol with

an arbitrary number of malicious (Byzantine) participants is a non-trivial undertaking. For

simplicity in this work, we presume that such a protocol (see Chapter 4) can be layered un-

derneath mpOTR. To free mpOTR from dependence on any specific consensus-preserving

protocol, the shutdown phase guarantees that any consensus violations not repaired by the

lower layer will be detected by mpOTR.

3.4.1 Network communication

Our constructions assume the existence of the following network primitives, typically pro-

vided by application layer protocols, such as IM or IRC. To free our constructions from

undue dependence on the underlying network layer, we limit ourselves to the following
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primitives:

• Broadcast(M) — sends message M over the broadcast channel where it can be

Receive()’ed by all other participants. In the absence of a broadcast medium, like

an IRC channel, Broadcast() can be simulated by sending M directly to each other

participant in P.

• Send(Â,M) — sends message M addressed explicitly to Â. The network may send

M to Â directly (point-to-point) or via broadcast (during broadcast, all the honest

participants other than Â ignore M).

• Receive()→ (Â,M) — returns any waiting message M received by the party that

invokes Receive() along with M’s alleged author Â.

• Receive(Â)→M — waits until a message is received from Â and returns that mes-

sage (M).

To simplify our protocols, we make the following assumptions. Broadcast() and

Send() are non-blocking. If message M from party Â arrives at B̂ before B̂ executes a

Receive() call, M is buffered at B̂ and will be returned upon some subsequent invocation of

Receive() by B̂. Receive() calls block until a message is available. If the current instance

of some party Â has assigned a value to its session id (sidi) variable, Receive() will only

return messages M that were sent from an instance of some party B̂ that has set its session

id to the same value (i.e. Broadcast(), Send(), and Receive() multiplex on sidi).

Recall that, with all network access, the adversary has control over message delivery

and may modify or deliver messages at will. Thus, when Receive() invoked by B̂ returns
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(Â,M), Â may have invoked either Broadcast(M) or Send(B̂,M), or the adversary may

have sent M under the identity of Â.

In the following discussion, we abuse notation in that a single value M may be replaced

by a tuple (x1,x2, . . .). This indicates that the values x1,x2, . . . have been encoded into a

single message using an unambiguous encoding scheme. Upon receiving such a message,

if parsing fails, the protocol assigns the distinguished value ⊥ to each of x1,x2, . . ..

3.4.2 Setup phase

Algorithm 3: Initiate(Pi) — initiate a chatroom Ci among the participants Pi in
the context of party X̂ . On successful completion, all participants hold a shared en-
cryption key, ephemeral public signature keys for all other participants, and have
authenticated all other participants and protocol parameters.

Input: chat participants Pi
Output: an encryption key gki, session id sidi, ephemeral public signature keys of

all other participants {EŶ ,i | Ŷ ∈ Pi}
// Initialize variables
sidi←⊥, Sent← /0, Received← /0;
consensusŶ ← false for all Ŷ ∈ Pi;

sidi← SessionID(Pi);

// Exchange ephemeral signature keys

(result,R) $←DSKE(sidi,Pi);
if result = accept then

foreach (E,Ŷ ) ∈ R do EŶ ,i← E;
else

abort session initiation;

// Agree on shared encryption key

gki
$←GKA(Pi,R);

if gki =⊥ then abort session initiation;
Attest();

The setup phase is responsible for deriving the shared encryption key gki for the chat-
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room Ci, performing entity authentication, facilitating exchange of ephemeral signing keys

EX̂ ,i (X̂ ∈ Pi), and ensuring forward secrecy and deniability. In the following, we assume

that the participants have negotiated the participant set Pi for the chatroom instance Ci

via an unspecified, unauthenticated means. Each participant in the protocol executes the

Initiate(Pi) algorithm (Algorithm 3) with their view of Pi. The Initiate() procedure will

only succeed if every other party in Pi completes its portion of the protocol correctly and

has the same view of Pi.

Algorithm 4: SessionID(Pi) — invoked in the context of party X̂ , the algorithm
returns a unique (with high probability) chatroom identifier for the set Pi upon suc-
cessful completion.

Input: chat participants Pi
Output: session id sidi

xX̂
$←{0,1}k;

Broadcast(xX̂);
Outstanding← Pi \{X̂};
while Outstanding 6= /0 do

(Ŷ ,x)← Receive();
if Ŷ ∈ Outstanding then

xŶ ← x;
Outstanding← Outstanding\{Ŷ};

return H(Pi,xŶ1
,xŶ2

, . . .) for all Ŷ j ∈ Pi ordered lexically;

First, the participants calculate a globally unique session id sidi for the current session

(Algorithm 4). Each participant X̂ chooses a random value xX̂ of suitable length k and

broadcasts it to the other participants. Each participant calculates sidi by hashing the par-

ticipant set Pi with the random contributions of all other participants. Under the assumption

that H(·) is a collision-resistant hash function, sidi is globally unique with high probabil-

ity as long as at least one participant behaves honestly. If the adversary has manipulated

the random contributions (x), it will be detected during the Attest() algorithm executed
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at the end of Initiate() when sidi and any other unauthenticated parameters paramsi are

authenticated.

X̂ then enters into a deniable signature key exchange protocol with the other par-

ticipants of Pi (DSKE(sidi,Pi)) to generate an ephemeral signature key pair (EX̂ ,i,eX̂ ,i)

and to exchange ephemeral public keys with the other parties in Pi. X̂ will use eX̂ ,i to sign

messages sent to the chatroom Ci. X̂ generates a new signing key pair in each session so

that there is no transferable proof that he has signed any messages in the chat transcript.

However, the other participants must know that EX̂ ,i will be X̂’s public signature key for

this session.

Next, Initiate() invokes a group key agreement protocol that uses the set of partici-

pants Pi and their ephemeral signature keys to derive a fresh encryption key gki shared by

all members of Pi. If any stage of the group key agreement fails, GKA() returns ⊥ and

Initiate() aborts.

Algorithm 5: Attest() — authenticate (previously) unauthenticated protocol param-
eters for the current session in the context of party X̂ .

Input: session id sidi, chat participant set Pi, negotiated protocol parameters
paramsi

Output: aborts protocol initiation on failure
M← H(sidi, paramsi);
AuthSend(M);
Outstanding← Pi \{X̂};
while Outstanding 6= /0 do

(Ŷ ,MY )← AuthReceive();
if MY 6= M then

abort the session;
else

Outstanding← Outstanding\{Ŷ};

Finally, all participants execute the Attest() algorithm (Algorithm 5) to ensure that they
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agree on all lower-level protocol parameters that they may have negotiated before invoking

Initiate(). Each participant takes a hash over all of these values and the session identifier,

and uses the AuthSend() and AuthReceive() procedures (see §3.4.3) to transmit the hash

value to all the other participants in a confidential, authenticated manner. Each participant

then ensures that the value sent by all other participants matches their own. Upon success-

fully completing Attest(), the participants have fully initialized the chat session and can

enter the communication phase.

When users wish to join or leave a chatroom, the protocol shuts down the current ses-

sion and then calls Initiate() with the new set of participants to initialize a new chat ses-

sion. We handle joins and leaves in this manner because we currently determine transcript

consensus during the shutdown phase and must derive a new encryption key before a mem-

bership change can take place. Client software can shut down and initialize a new session

behind the scenes so that users need only decide whether or not they accept the proposed

membership change.

Deniable Signature Key Exchange (DSKE)

In our construction, we use a sub-protocol that we call Deniable Signature Key Exchange.

Deniable Signature Key Exchange allows the participants in a session to exchange ephem-

eral signature keys with each other in a deniable fashion. A participant will use his ephem-

eral signature key to sign messages during one session. Because it is ephemeral (used only

in one session), the private key can be published at the end of the session to permit tran-

script modification. Because the key exchange protocol is deniable, there is no transferable

proof that any party has committed to use any given key.

Deniable Signature Key Exchange is an n-party interactive protocol operating over
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common inputs: sid — a fresh session identifier, and P — the set of participants for the

session identified by sid. When the protocol concludes, each participant outputs a termi-

nation condition (either accept or reject) and a set R relating the members of P to public

signature keys (e.g. R = {(EÂ, Â),(EB̂, B̂), . . .}).

Two-party signature key exchange The goal of two party signature exchange (Algo-

rithm 6) is to allow Alice and Bob to exchange signing key pairs (EÂ,eÂ) and (EB̂,eB̂),

respectively, such that: (i) Alice is assured that Bob knows eB̂ corresponding to EB̂; (ii)

Alice is assured that Bob, if honest, will not associate E 6= EÂ with Alice; and (iii) Alice

is assured that after completing the exchange Bob cannot prove to a third party Charlie

(without Alice’s consent) that Alice has associated herself with EÂ and knows eÂ. The

same conditions must hold for Bob with respect to Alice.

Algorithm 6: AuthUser(sid, B̂,EÂ,eÂ) — obtain and associate B̂ with a signing key
pair, and send B̂ one’s own signing key EÂ.

Input: session id sid, peer identity B̂, signature pair (EÂ,eÂ)
Output: associate B̂ with EB̂ or ⊥
k,km← denAKE(Â, B̂);
Send(B̂,SymMacEnckm

k (EÂ,sid, Â, B̂));
(EB̂,sid′, B̂′, Â′)← SymMacDeckm

k (Receive(B̂));
Send(B̂,SymMacEnckm

k (SigneÂ
(EB̂,sid, Â, B̂));

σ← SymMacDeckm
k (Receive(B̂));

if (sid′ = sid)∧ (Â′ = Â)∧ (B̂′ = B̂)
∧Veri f yEB̂

(σ,(EÂ,sid′, B̂, Â)) then
return B̂,EB̂;

else
return ⊥;

The signature exchange proceeds as follows: first Alice and Bob run a deniable two-

party key agreement protocol denAKE(Â, B̂) to derive a shared secret. Using symmetric
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key techniques they exchange signature keys that they intend to use in the subsequent

chatroom. Finally, both users sign the ephemeral public key of their peer along with both

Alice’s and Bob’s identities under their ephemeral keys for the current session.

Assume that denAKE() is a secure, deniable authenticated key agreement protocol.

Let SymMacEnckm
k () (resp. SymMacDeckm

k ()) be an algorithm that encrypts (decrypts) and

authenticates messages with the symmetric keys k and km, and let Sign() be an existentially

unforgeable signature scheme. The protocol denAKE() provides keying material only to

Bob and Alice. Hence, they are assured about each other’s identity. Since Bob signs Alice’s

ephemeral public signature key she is assured that the signature that Bob generated is not

a replay from other sessions and that Bob knows the corresponding ephemeral private key.

Bob is assured that EÂ is connected with Alice because he did not generate EÂ and his peer

has to know k and km to complete the protocol. Since denAKE() is secure, the only party

other than Bob that could have computed k and km is Alice. Likewise, Alice is assured

that an honest Bob will not associate E 6= EÂ with her because Bob will only associate an

ephemeral key with Alice if Bob received it through a secure channel that only Bob and

Alice share. The only proof that Bob has about communicating with Alice is the denAKE()

transcript. Since denAKE() is deniable Alice can argue that any transcript between herself

and Bob was created without her contribution; in other words, Bob’s view cannot associate

Alice to EÂ unless Alice admits the association. Thus Algorithm 6 achieves the three

conditions that we described.

We conclude by saying that that EÂ and EB̂ are “pseudonyms” that Alice and Bob

exchange. As long as the corresponding private keys are not leaked each one of them is

assured about the identity behind the pseudonym and messages signed with the keys, but

neither can prove to a third party the relation between the pseudonym and a real entity.
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Furthermore, any party Mallory can create a fake pseudonym for Alice or Bob.

Multi-party signature key exchange We extend the two-party algorithm to the multi-

party setting. In particular, given a set of participants P, every pair of users in P runs

Algorithm 6. For a given identifier sid, Alice uses the same key pair (EÂ,eÂ).

The next stage is for participants to assure each other of the consistency of the as-

sociation table that they build. Let (EÂ, Â), . . . ,(EX̂ , X̂), be the association table built by

Alice, lexicographically ordered on the signing keys. Each user computes a hash of that

table, signs the hash with her ephemeral signing key and sends it to the rest of the partici-

pants10. As a result each participant is assured that the remaining members have the same

view about the association table. Note that the exchange does not reveal anything about

the table. The set of participants can collaborate to introduce “non-existent” users into the

chatroom. In other words, if agreed, a set of users can create a transcript that allegedly

involves an absent user Alice. Such a transcript can be indistinguishable from a transcript

where Alice did take part.

Deniable AKE By a “secure” key agreement protocol we mean the standard indistin-

guishable from random key notion introduced by Bellare and Rogaway [9]. However, we

are concerned with malicious insiders so protocols that meet models as introduced in [69]

are more suitable for our needs, since they allow the adversary to adaptively introduce

malicious parties to the system.

In contrast to secure key exchange, “deniable” key exchange has not been as widely

studied. On one hand there is a formal definition, presented in [34, Definition 1], that

relies on the fact that a receiver’s view can be simulated. The authors prove the deniability

10This can be incorporated into Attest()
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of SKEME [53] according to their definition. However, there are some pitfalls related

to leaking static secrets and the deniability of SKEME. If the judge J has access to the

static secrets of the alleged participants, J can distinguish between authentic and simulated

transcripts. Therefore, SKEME does not meet our privacy requirement (§3.3.2).

On the other hand, Diffie-Hellman variants like MQV [59] provide plausible deniability

as outlined in [14]. The shared key is derived only from public values, so a peer can

plausibly argue that he did not take part in the key agreement. Additionally, implicitly

authenticated protocols that meet the security definition of [69] appear to meet our privacy

notion. This allows any such protocol to be used in settings where the participants may

expose their long-lived secrets without sacrificing deniability.

As suggested in [14], one can achieve improved deniability via self-signed certificates

that users authenticate. At the extreme it is possible for users not to have any static secrets

but to authenticate each other via out-of-band means for every session. While such a

solution is possible, its usability is questionable. We accept that users cannot convincingly

deny their static secrets in order to achieve a less complicated protocol. The users can still

deny taking part in any fixed chatroom and the content of messages that they sent.

Group Key Agreement

Assuming that users successfully run the signature exchange protocol, they can proceed to

establish group keys. Given sid and an association table from sid users run a typical key

group key agreement protocol to derive a shared secret key gk to ensure that they have a

means for confidential communication. Note that when the group key agreement is based

on the session-specific signature keys, Alice can deny knowing gk by arguing that she took

no part in the protocol — recall there is no proof of her relation with EÂ.
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Properties

Alice can plausibly argue that she did not take part in a chat because it is possible to create

a protocol transcript that includes users who did not actually take part in the chat. This can

happen if all participants collaborate to introduce such non-existent users. In the limit, this

allows a single party to create a transcript involving any number of other non-cooperating

parties. With an appropriate deniable signature key exchange, the forging party need not

even be a member of P. The issue of modifying existing messages in a transcript will be

addressed in the shutdown phase.

3.4.3 Communication phase

During the communication phase, chat participants may exchange confidential messages

with the assurance of origin authentication — that they have received messages unchanged

from their purported authors. Given a chatroom instance C1 with participant set P1, we use

the group key gk1, ephemeral public keys of the participants EX̂ ,1 (X̂ ∈ P1) and session id

sid1 for C1 in a standard Encrypt-then-Sign construction to provide authenticated encryp-

tion [8] for messages sent to the chatroom. AuthSend() (Algorithm 7) and AuthReceive()

(Algorithm 8) give our construction.

Algorithm 7: AuthSend(M) — broadcast message M authenticated under party X̂’s
ephemeral signing key to chatroom Ci.

Input: message M, session id sidi, shared chat encryption key gki, ephemeral private
signing key eX̂ ,i

Output: authenticated encryption of M is broadcast to chat channel
Sent← Sent ∪{(X̂ ,M)};
C← Encryptgki(M), σ← SigneX̂ ,i

( (sidi,C) );
Broadcast( (sidi,C,σ) );
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Algorithm 8: AuthReceive() — attempt to receive an authenticated message from Ci,
return the sender and plaintext on success, sender and ⊥ on failure.

Input: session id sidi, shared chat encryption key gki, ephemeral public signature
keys of other participants {EŶ ,i | Ŷ ∈ Pi}

Output: sender identity Ŷ and plaintext message M, or ⊥ on failure
(Ŷ ,(sid,C,σ))← Receive();
if sid 6= sidi∨¬Veri f yEŶ ,i

(σ,(sid,C)) then
return (Ŷ ,⊥); // Bad signature or session id

M← Decryptgki(C) ; // returns ⊥ on failure
if M 6=⊥ then

Received← Received∪{(Ŷ ,M)};
return (Ŷ ,M);

When Â sends a message to the chatroom, she first encrypts the message under the

shared key of the chatroom gk1 to ensure that only legitimate chat participants (P1) will be

able to read it. Then, Â signs the session id sid1 and ciphertext using his ephemeral signing

key eÂ,1 and broadcasts the session id, ciphertext, and signature to the network allowing

all recipients to verify that Â has sent the ciphertext to C1 and that it has been received

unmodified.

We assume that Encrypt() and Decrypt() constitute a secure encryption scheme indis-

tinguishable under chosen plaintext attack (IND-CPA) [8], GKA() is a secure group key

agreement scheme [12], DSKE() is secure as described in §3.4.2, Sign() and Veri f y()

constitute an existentially unforgeable signature scheme, and session identifiers are glob-

ally unique. Under these assumptions, we can transform any confidentiality adversary O

(§3.3.2) into a successful adversary against the encryption scheme, the group key agree-

ment that derives the encryption key gki, or the deniable signature key exchange scheme

that distributes the ephemeral signature keys that are used to authenticate messages sent

during the group key agreement. Therefore, under the assumption that the above protocols

80



are secure, our full scheme is secure against any confidentiality adversary O.

Likewise, the security of DSKE() and the signature scheme imply that the adversary

cannot forge messages that are acceptable by AuthReceive(). Including the globally unique

session id in the message to be signed prevents a message from one session from being re-

played in another session. We can also achieve this by deriving a chatroom-specific MAC

key from gki, which verifies that messages are designated for sidi. While a consensus ad-

versary T is unable to successfully forge messages, she can attempt to break consensus by

dropping or duplicating messages or by sending different correctly authenticated messages

from a corrupted participant to disjoint subsets of honest participants. E.g. T uses cor-

rupted participant Ĉ to send M1 to X̂ and M2 to Ŷ where M1 6= M2. We address these last

three threats during the shutdown phase.

3.4.4 Shutdown phase

When the application determines that there are no outstanding in-flight messages between

participants and that the chat session should be ended, it invokes the Shutdown() algo-

rithm (Algorithm 9). Shutdown() is responsible for determining whether all participants

have reached a consensus and for publishing the ephemeral signature key generated for the

current session. All in-flight messages must have been delivered before invoking shutdown

for two reasons: (i) in-flight messages will cause unnecessary failure to reach consensus;

and (ii) publication of the ephemeral signature key would allow the adversary to modify

any in-flight messages.

To establish consensus, the local party (X̂) takes a digest over all the messages authored

by X̂ during the chat session. X̂ then calculates the digests of X̂’s transcripts of the mes-

sages received from each other party, combines these digests into a single digest, and sends
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Algorithm 9: Shutdown() — called in the context of party X̂ when the application
determines that the session should be shut down. Determines if consensus has been
reached with other participants and, if so, publishes X̂’s ephemeral signing key.

Input: all sent messages Sent, all received messages Received, participant set Pi,
session id sidi, ephemeral signing key eX̂ ,i

Output: consensusŶ values indicating if consensus has been reached for each party
Ŷ , publishes private ephemeral signing key for current session eX̂ ,i

// Compute and publish digest of full chat transcript

Let ((X̂ ,MX̂
1 ),(X̂ ,MX̂

2 ), . . .) = Sent in lexical order;
hX̂ ← H(MX̂

1 ,M
X̂
2 , . . .);

foreach Ŷ ∈ Pi \{X̂} do
Let (MŶ

1 ,M
Ŷ
2 , . . .) = {M | (Ŷ ,M) ∈ Received} in lexical order;

hŶ ← H(MŶ
1 ,M

Ŷ
2 , . . .);

Let (Ŷ1,Ŷ2, . . .) = Pi in lexical order;
h← H(hŶ1

,hŶ2
, . . .);

AuthSend( (“shutdown”,h) );

// Determine consensus

Outstanding← Pi \{X̂};
while Outstanding 6= /0 do

(Ŷ ,(M,h′))← AuthReceive();
if M = “shutdown”∧ Ŷ ∈ Outstanding then

consensusŶ ← h = h′;
Outstanding← Outstanding\{Ŷ};

// Verify that no participants will accept new messages
AuthSend(“end”);
Outstanding← Pi \{X̂};
while Outstanding 6= /0 do

(Ŷ ,M)← AuthReceive();
if M 6= “end” then

return;
else

Outstanding← Outstanding\{Ŷ};

// Publish ephemeral signing key associated with X̂’s pseudonym
Broadcast( (sidi,EX̂ ,i,eX̂ ,i) );
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it along with the distinguished message “shutdown” to all the other parties. Shutdown()

then collects the digests published by all the other participants to allow the local party

(X̂) to determine if he has reached consensus with each of the other parties on the session

transcript.

To ensure that out-of-order message delivery does not affect this digest, the messages

are taken in lexical order. Note, however, that should messages include a suitable order

fingerprint, then lexical order can coincide with delivery or creation order, hence our or-

dering is unrestrictive. For example, if each message starts with an author identifier and a

sequence number, lexical order will group messages by author in the order that they were

created.

Since at the setup phase parties confirmed their views of chat participants and sid of the

chat, all transcripts already agree on the set of participants and the chat instance. As argued

in §3.4.3, the only remaining way for an adversary to break consensus is to force different

messages in the transcript. The consensus adversary does not (yet) have the signature keys

hence he is still not able to inject new messages or impersonate honest users; his only

freedom is the hash function that we assume collision and preimage resistant. Thus chat

participants obtain assurances about consistency — they reach pairwise consensus in the

sense of §3.3.2.

The consensus approach adopted above is crude as it does not attempt to remedy any

consensus errors and it only determines consensus at the very end of the chat session. This

means participants will be given no guarantee that any level of consensus ever held between

them and other participants that fail or are partitioned away before the chat session ends.

We have chosen this approach for its simplicity and clarity. Approaches that ensure con-

sensus incrementally throughout the chat session can be implemented at a network layer
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beneath mpOTR. (We outline the desired properties for a lower-level incremental consen-

sus protocol in Section 3.5.) In the meantime, Shutdown() detects consensus violations

in order to ensure that, regardless of the specific properties of the underlying consensus

protocol, our protocol will detect any violations of reliable delivery at the mpOTR level.

Furthermore, the signatures used to authenticate messages are transferable within the cha-

troom since all members have the correct association between the chatroom-specific sig-

nature keys and the entities behind the keys. Therefore the protocol can identify malicious

users, since an honest party Alice has transferable proofs to convince any other honest

party about the origin of the messages that she received. Thus she can prove that she did

not modify or inject messages on behalf of other users. Likewise, she can update her tran-

script with messages that she failed to receive. Ultimately, honest users can agree on a

transcript that is the union of all the messages that have reached at least one honest user.

After exchanging all the values, Shutdown() sends the distinguished message “end”

indicating X̂ will no longer send any authenticated messages. Once X̂ has received the

“end” message from each other participant, X̂ knows that all participants have determined

their consensus values and will no longer accept messages from X̂ . This allows X̂ to publish

his ephemeral signing key to permit modifying the chat transcript.

Publishing the ephemeral signing key is a delicate issue. If the key is published too

soon, the adversary could use the ephemeral signing key to impersonate the current party

to others. Therefore, the protocol only publishes the ephemeral signing key at the end of

Shutdown() if it can verify that all other parties have agreed that they have determined

their consensus values and will only publish their keys or end the session. The adversary

can trivially prevent any party X̂ from publishing its signing key by preventing the delivery

of even one of the “end” messages. However, this is not a problem. The protocol is
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deniable even without publishing the ephemeral signing keys. Therefore, we gladly trade

the deniability benefits gained by allowing malleability for ensuring that the adversary

will not be able to impersonate X̂ . However, if parties do publish their ephemeral signing

keys then the existing transcripts can be tweaked. This a posteriori publication of signing

keys allows for a user Alice who accepts a relation between her chatroom signing key and

herself to argue that the messages in the transcript are bogus. Indeed the adversary could

inject and/or delete messages on behalf of Alice’s ephemeral signing key, since all secret

information has been made public.

3.5 Future Work

As outlined above, mpOTR provides a number of important properties: confidentiality,

authenticity, non-repudiation among chat session participants, deniability through forge-

ability of session transcripts, and pairwise indication of consensus at the end of a session.

However, a number of practical guarantees needed to build a user-friendly chat application

have been delegated other protocol layers.

Network delays and benign failures can cause messages to be received out of order or

dropped. For usability, mpOTR should deliver messages in causal order [56] and provide

retransmission for lost messages so that no reply is received before messages that preceded

it.

When network partitions separate the chatroom into multiple disjoint components, each

set of connected participants should be able to continue to communicate amongst them-

selves and resynchronize with participants in other components once the partition is re-

paired.

85



When chatroom participants fail before the end of a session, the remaining chatroom

members have no way to determine the degree of consensus that held with the failed par-

ticipant just before the failure occurred. Whenever a participant receives a message the

protocol should indicate the level to which consensus holds between the sender and the

receiver instead of deferring the task until the end of the session. Similarly, while we have

described a strategy for remedying consensus violations using non-repudiation between

chatroom members, the protocol should make it automatic.

Lastly, because malicious chatroom participants or servers may attempt to violate con-

sensus through duplicity or use more than their share of network resources to impede the

progress of the chat, the protocol should detect duplicity automatically and carefully pre-

vent resource starvation between honest participants.

Providing these properties in an environment where an arbitrary number of malicious

(or Byzantine) insiders can collude to thwart these guarantees is no trivial task. Therefore,

the next chapter addresses these issues and develops a Causal Broadcast protocol upon

which we can run mpOTR in order to achieve each of these desired properties.
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Chapter 4

OldBlue: Causal Broadcast in a

Maximally Byzantine Environment

4.1 Introduction

In the last chapter we saw the need for highly-available incremental consensus protocol

for mpOTR which remains secure in a Byzantine environment. mpOTR’s requirements

represent a single instance of the more general distributed systems problem of providing

Causal Broadcast. Causal Broadcast is one of the most fundamental primitives for group

oriented communication. A Causal Broadcast protocol is a broadcast network protocol

which ensures that messages are delivered in an order that preserves the potential causal

relationships between messages. If message m1 could have caused the sending of m2 (the

author of m2 sent or delivered m1 before sending m2), a process will not deliver m2 before it

has delivered m1. Typically, this property is enforced by including in each message either

a vector timestamp or the unique message identifiers of causally preceding messages [82,
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85]. This allows the recipient of a message m2 to precisely determine the set of messages

M which causally precede m2 and to ensure that m2 will only be delivered once all messages

in M have been delivered.

Many Causal Broadcast protocols exist. However, most [68, 3, 82, 40, 11, 84] tolerate

benign failures only. Solutions based on tamper-proof hardware which tolerate Byzan-

tine failures have been presented. [96, 97] However, such hardware is still not in wide

deployment in commodity PCs. One option for providing Causal Broadcast is to build on

protocols providing stronger guarantees, such as Reliable Broadcast [46, 21, 86, 6, 40] and

Byzantine Agreement [55, 57, 23]. Though, Byzantine Agreement is solvable for t = n−1

Byzantine failures in general, many practical Byzantine Agreement and Reliable Broadcast

protocols that guarantee liveness among correct processes, can tolerate at most t ≤ bn−1
3 c

Byzantine failures. [21, 86, 6, 62, 23, 67, 28] This limit is undesirable in the maximally

Byzantine setting of peer-to-peer (P2P) protocols where an adversary can control an arbi-

trary fraction of system nodes limited only by his resources. Even benign causes such as

P2P network churn and temporary network outages can cause large numbers of processes

to be temporarily unreachable. During a outage of t > bn−1
3 c, Reliable Broadcast protocols

and Byzantine Agreement protocols must sacrifice availability to maintain consistency.

More general Byzantine Agreement protocols that allow up to n−1 Byzantine failures

fare no better. If n− 2 nodes may be Byzantine, a Byzantine Agreement protocol must

sacrifice availability if even a single process becomes unreachable. To illustrate, in a By-

zantine Agreement protocol, a sender sends a message m and all correct processes must

deliver the some message m′. If the sender was correct, m′ must be equal m. Suppose there

are only two correct processes p̂ and q̂ on opposite sides of a network partition and p̂ sends

m. For availability to be preserved, p̂ must be able to deliver m. However, for Byzantine
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Agreement consistency to be preserved, q̂ must also deliver m. But, due to the network

partition, there is no way for m to be communicated to q̂. Therefore, either availability or

consistency must be sacrificed.

This is a fundamental limitation for distributed systems which attempt to ensure strong

consistency properties like Byzantine Agreement and Consensus. The CAP Theorem [19,

42] states that, during a network partition, a distributed system must choose between main-

taining availability or consistency. It cannot preserve both properties simultaneously. By

contrast, causal ordering can be determined locally within each connected component al-

lowing connected processes to remain available during network partitions while preserving

causal consistency within the component. This indicates the need for a protocol that di-

rectly ensures Causal Broadcast, is tolerant of an arbitrary number of Byzantine failures,

and ensures availability among connected processes during a network partition. In fact,

recent research [61], conducted concurrently with our own, proves that a form of causal

consistency closely related to the causal consistency presented in this work is nearly the

strongest1 form of consistency that can be achieved in an always-available system that may

undergo network partitions.

The requirement to maintain availability when faced with an arbitrary number of By-

zantine processes is not a mere academic novelty. As we saw in Chapter 3, it is the en-

vironment in which mpOTR operates. Furthermore, it captures the environment of the

increasingly popular peer-to-peer (P2P) networking paradigm. A number of large dis-

tributed systems are being constructed from computing and network resources contributed

by volunteers throughout the globe. P2P’s widely distributed nature and lack of central con-

trol make it an attractive architecture for building anonymity-preserving and censorship-

1Specifically, [61] proves the impossibility of maintaining a variety of causal consistency properties that
are slightly stronger than our own. These results are discussed further in Section 4.7.
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resistant networks such as Tor [107] and Freenet [104]. Adversaries can volunteer re-

sources to P2P systems in order to attack from within. Because the adversary’s level of

influence is only limited by the resources she can contribute, participants in P2P networks

find themselves in a maximally Byzantine environment — every other participant may be

attempting to thwart the goals that the system seeks to achieve. This has led to efforts

to design specialized protocols for secure P2P network variants [113, 76, 73]. However,

availability of fundamental distributed systems primitives that are secure in this setting,

such as Causal Broadcast, would benefit a variety of systems.

In this work we present OldBlue, a Causal Broadcast protocol which allows recipients

of a message m to ensure that they have delivered all messages causally preceding m (before

delivering m) by embedding the identifiers of all direct causal predecessors in each message.

Message identifiers are computed via a message digest over the sender, message body,

identifiers of all direct causal predecessors, and the author’s signature. Origin authenticity

is guaranteed through the use of digital signatures and, because message identifiers form

a Merkle hash tree [70] over all preceding messages, the recipient of m is guaranteed that,

once they deliver m, their view of m and all of m’s causal predecessors is consistent with

the sender’s view. In OldBlue, correct processes cooperate in order to opportunistically

retransmit lost messages.

Like Reiter and Gong’s Piggybacking protocol [85], OldBlue piggybacks message di-

gests to ensure that recipients can precisely determine all causal predecessors of each

message. Like Psync, OldBlue uses the directed acyclic graph structure of the causal

precedence relation to reduce the amount of information that must be sent in each mes-

sage. Unlike either protocol, OldBlue enforces a formal fairness property and goes to

great lengths to prevent starvation between correct connected processes in the presence of
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an arbitrary number of Byzantine processes. In contrast to protocols which give stronger

delivery and ordering guarantees such as Byzantine Agreement, OldBlue’s direct support

of causal precedence and fairness ensures availability among connected correct processes

during network partitions.

First, we describe our threat model (Section 4.2) before formally defining OldBlue’s

consistency and availability properties (Section 4.3). We then present the basic protocol

(Section 4.4) providing formal proofs that each property has been achieved (Section 4.4.6).

Section 4.5 presents preliminary simulation results indicating the network performance of

OldBlue. We discuss practical implementation considerations in Section 4.6. Section 4.7

reviews prominent related work in the field. Finally, areas for future work are discussed in

Section 4.8.

4.2 Threat Model

OldBlue operates in the following setting. A protocol session takes place between n pro-

cesses. The processes are connected by an unreliable, asynchronous, multicast medium

which may be simulated via point-to-point messages or broadcast.

A Byzantine adversary has complete control over the network. The adversary may

modify, insert, delete, duplicate, and reorder messages as she pleases. This ensures that

OldBlue’s security properties are not dependent on the properties of the underlying net-

work.

The adversary may also corrupt an arbitrary number (t) of processes, learning their

internal state including both their long-lived and session secrets. The adversary can cause

corrupt processes to deviate from the protocol arbitrarily. In contrast to corrupt processes,
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correct processes neither divulge their internal state nor deviate from the protocol. Pro-

cesses with incorrect implementations or hardware failure are considered corrupt and their

behavior to be the manner in which the adversary has caused them to deviate from the

protocol. Because the adversary has full control of the network, she may prevent a correct

process p̂ from receiving any message(s) sent by other processes, effectively disconnecting

them from the network.

In the maximally Byzantine setting of many P2P networks, an adversary may join as

many nodes to the system as her resources permit. While we place no limits on the num-

ber of corrupt processes (t), some of OldBlue’s properties are trivially true unless there

are at least two correct processes. Therefore, without loss of generality, in the following

discussion we will assume that t ≤ n−2.

4.3 Protocol Properties

OldBlue provides the following interface to other system layers:

CB.open(processes, pid,gk,sid) Begin a causal broadcast session among processes (ini-

tialize state, etc.). pid is the identifier of the local process. gk is the session group

encryption key. sid is a session identifier unique over all sessions.

id CB.broadcast(msg) Invoked by the application layer to broadcast message msg to all

processes. Returns a unique id which distinguishes the current invocation at the local

process from all other invocations by all other processes. This permits associating

each invocation of CB.deliver() below with a specific invocation of CB.broadcast().

Because an application may send messages in response to inputs provided by the
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adversary, the adversary is free to invoke the CB.broadcast(m) method of correct

processes for arbitrary m.

CB.deliver(p̂, id,msg) Callback to application layer signaling delivery of message msg

with id id authored by p̂. Messages are delivered in causal order.

CB.close() End a session opened by CB.open().

The formal properties of OldBlue are defined in terms of the operation of

CB.broadcast() and CB.deliver(). OldBlue ensures that messages are delivered in cau-

sal order. Informally, if receipt of a message m could have caused the sending of message

m′, we say that m causally precedes m′. Formally:

Definition 1 (Causal Precedence). An event a causally precedes an event b (written a→ b)

if and only if one of the following conditions hold:

1. a correct process p̂ executes CB.broadcast(m) yielding i (event a) and b is the corre-

sponding message delivery CB.deliver(p̂, i,m) (i.e. broadcast of a message precedes

its delivery)

2. a correct process executes CB.broadcast(m) (event a) before executing

CB.broadcast(m′) (event b) (i.e. temporal progression at a correct process)

3. a correct process executes CB.deliver(p̂, i,m) (event a) then CB.broadcast(m′) (event

b) (i.e. delivery of m precedes broadcast of m′)

4. there exists some event e such that a→ e and e→ b (i.e. transitive closure)

The causal precedence relation · → · defines a partial ordering over events. If a→ b,

then we can say that a happened before b. Any two events c and d not related by the causal
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precedence relation are said to be concurrent (i.e. c and d are concurrent if c 6→ d and

d 6→ c). No statements can be made about the execution order of concurrent events.

In the context of Causal Broadcast protocols, all events of interest correspond to broad-

cast or delivery of messages. Therefore, we will abuse notation and speak of a message m

causally preceding another message m′ (m→ m′) where event a is the broadcast or delivery

of m, event b is the broadcast of m′ and a→ b according to Definition 1.

OldBlue captures potential causality between messages. It may be the case that a mes-

sage m was delivered before a message m′ was broadcast, but that the broadcast of m′ was in

no way influenced by m. Without application-specific knowledge, it is not possible to iden-

tify this scenario. Therefore, if a message m could have influenced the sending of another

message m′, OldBlue conservatively determines that m→ m′.

Causal precedence is defined by actions performed by correct processes because cor-

rupt processes can behave arbitrarily. Note the distinction between actual causal prece-

dence – as defined above – and apparent causal precedence. Causal precedence must be

represented in protocol messages. It is possible that corrupt processes may author mes-

sages which appear to have an arbitrary set of (possibly non-existent) causal predecessors.

Therefore, message m with id i authored by corrupt process p̂ enters the causal precedence

relation only when a correct process executes CB.deliver(p̂, i,m). We address this issue

further in Sect(s). 4.4.3 and 4.4.6.

OldBlue ensures the following guarantees on correct process behavior2:

Definition 2 (Validity). If a correct process p̂ executes CB.broadcast(m) yielding i for a

message m, then p̂ eventually executes CB.deliver(p̂, i,m). If the adversary delivers (without

2OldBlue’s properties are expressed in the positive (guarantees on correct process behavior) as opposed
to the negative (limitations on the adversary’s behavior).
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modification) all messages associated with CB.broadcast(m) to a correct process q̂, q̂ will

execute CB.deliver(p̂, i,m).

Validity provides three guarantees. It rules out trivial protocols that deliver no mes-

sages. It ensures self-delivery of messages. And, it ensures liveness of connected correct

processes – if the adversary faithfully delivers all protocol messages associated with an

invocation of CB.broadcast(m) to a correct process, that process must deliver m. If the ad-

versary does not faithfully deliver all such associated messages, to a correct process q̂, q̂

is not required to deliver m. (Indeed, in some cases to do so would violate Causal Consis-

tency.) In this paper, we use the following working definition of associated messages:

Definition 3 (Associated Message). A message is associated with CB.broadcast(m) if it

is the initial broadcast of m, a request to retransmit a lost message causally preceding m

sent by a process trying to deliver m, or a message causally preceding m retransmitted in

response to such a retransmission request.

Validity determines when a message must be delivered but it does not place any re-

strictions on delivery order. In OldBlue, message delivery order is governed by Causal

Consistency:

Definition 4 (Causal Consistency). No correct process p̂ will execute CB.deliver(q̂, i,m)

until it has delivered all messages m′ which causally precede m. Specifically, if q̂ (the author

of m) is a correct process, before executing CB.deliver(q̂, i,m), p̂ will have executed:

1. CB.deliver(x̂, i′,m′) for each such call that occurred at q̂ before q̂ executed

CB.broadcast(m) yielding i

2. CB.deliver(q̂, i′,m′) for each call CB.broadcast(m′) yielding i′ made by q̂ before q̂

executed CB.broadcast(m) yielding i
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Causal Consistency ensures that all messages are delivered in causal order. Causal Con-

sistency further ensures that, whenever any two correct processes execute

CB.deliver(q̂, i,m), these two processes agree on the message contents, authorship, and

causal ordering of m and all m′→ m. A corrupt author q̂ does not weaken the consistency

guarantees ensured by Definition 4. If q̂, the author of m, is corrupt, the causal precedence

of m will not be defined until m has been delivered by a correct process. However, m will

have a set of apparent causal predecessors. Because q̂ is corrupt, Validity does not re-

quire p̂ to deliver m. Any correct process p̂ that does deliver m does not know whether

m’s author is correct. Therefore, p̂ must deliver m subject to the ordering imposed by m’s

apparent causal predecessors to ensure that p̂’s operation is correct irrespective of the cor-

rectness of q̂. To illustrate, let p̂ execute CB.deliver(q̂, i,m). Let the next message that p̂

sends be m′. m is now a causal predecessor of m′. Therefore, Validity requires any cor-

rect process r̂ which receives the messages associated with CB.broadcast(m′) yielding i′

to execute CB.deliver(p̂, i′,m′). Because p̂ is correct, Causal Consistency also requires r̂

to CB.deliver(q̂, i,m) and all apparent causal predecessors delivered by p̂. Thus Causal

Consistency guarantees that correct processes p̂ and r̂ will agree on m′ and all causal pre-

decessors (including m) after the delivery of m′ regardless of the correctness of q̂, the author

of m.

In this way Causal Consistency extends the liveness property ensured by Validity. Va-

lidity ensures that processes will be able to deliver a faithfully transmitted message au-

thored by a correct process. Causal Consistency ensures that all undelivered causally pre-

ceding messages will be delivered as well.

Definition 5 (Authenticity). In a session identified by sid, every correct process executes

CB.deliver(p̂, i,m) at most once for each value of i (and any values of p̂ and m) and, if p̂ is
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correct, then p̂ previously executed a call to CB.broadcast(m) yielding i within session sid.

Authenticity ensures that any attempt to impersonate a correct process or replay mes-

sages will not succeed. Authenticity also ensures that, for every delivered message, if the

purported author is correct, the message was transmitted without modification from that

author. Because corrupt processes can deviate arbitrarily from the protocol, Authenticity

does not place any constraints on their internal behavior.

Authenticity can also facilitate the detection of certain attacks. Suppose the adversary

partitions the session into two or more disjoint subsets P1,P2 and causes corrupt d̂ to send

differing messages m1 6= m2 to the respective subsets. To prevent each message from requir-

ing the delivery of the other, d̂ must author m1 and m2 so that neither is a causal predecessor

of the other (i.e. m1 and m2 are concurrent). After processes in P1 deliver m1, the adversary

must maintain the partition indefinitely. If the adversary allows transmission of any subse-

quent message m3 from p̂ ∈ P1 to any q̂ ∈ P2, m3 will include m1 as a causal predecessor.

This causes q̂ to deliver both m1 and m2 — two concurrent messages from d̂. Under the

assumption that d̂ is correct, Authenticity requires that d̂ invoked CB.broadcast(m1) con-

currently with CB.broadcast(m2). Causal Precedence ensures us no correct process will do

so, leading to a contradiction. Therefore d̂ must be corrupt and m1, m2 serves as a proof.

Corrupt processes may attempt to monopolize the resources of correct processes to pre-

vent them from making progress. OldBlue prevents this by employing a fair scheduling cri-

terion. Actions that processes perform are represented as requests (see Section 4.4.2). Each

process explicitly or implicitly issues requests for information required to make progress.

(Any process that does not have an outstanding request to retransmit a message is consid-

ered to have implicitly requested new messages.) Correct processes fulfill requests accord-

ing to a fair schedule to prevent starvation of correct processes.
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We associate with every process p̂ a FIFO queue of requests Rp̂. We define a function

bool eligible(p̂,r) that captures external constraints governing whether or not process p̂

is able to accept the fulfillment of request r at the time of invocation. E.g. A congestion

control mechanism might dictate that process p̂ is congested, thus we should not attempt

to send a message requested by p̂ right now because it is likely to be dropped. We assume

that, for each process p̂ and request r, eligible(p̂,r) depends only on information controlled

by p̂ and network conditions. Thus, if p̂ is correct, the adversary cannot cause p̂’s requests

to be ineligible by means other than exercising her ability to drop and delay messages on

the network. Furthermore, eligible(p̂,r) will eventually become true for all processes p̂

and requests r.

Definition 6 (Fairness). A scheduling algorithm outputs a sequence of requests from pro-

cesses (p̂i,ri) ,
(

p̂ j,r j
)
, . . . A fair scheduling algorithm ensures that each process with eli-

gible requests will have one of their requests scheduled at least once in every n requests.

That is to say, for each process p̂ where p̂ has an eligible request at the time the ith request

(ri) is scheduled, there is a request r j in the schedule with p̂ j = p̂, r j ∈ Rp̂, and i≤ j < i+n.

Fairness ensures that corrupt processes cannot cause a correct process to starve other

correct processes. Fairness only governs the outgoing messages sent by each correct pro-

cess because processes cannot control which messages they receive, nor can they determine

the author of a message until after signatures are verified. Correct processes process in-

coming messages in a first-come first-served order. We adopt a message-based fairness

criterion for simplicity, however other definitions may be suitable. Differences in compu-

tation time and message transmission time due to message length can be upper bounded

by suitable constants allowing message-based fairness to asymptotically approximate def-

initions capturing bandwidth or computation.
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4.4 The OldBlue Protocol

OldBlue is positioned above a network transport protocol layer that supports unreliable

asynchronous unordered end-to-end message transmission via multicast (possibly simu-

lated using multiple unicasts). send(recipients,msg) will multicast msg to recipients. The

callback recv(sender,msg) is invoked when a message, allegedly from sender, is received

from the network.

We associate with each process p̂ a public-private signing key pair (pk(p̂), sk(p̂)).

We assume that the correspondence between public signing keys and process identities

is known to all processes. We denote signing message m under private key sk(p̂) by

σ = S(sk(p̂),m). The corresponding verification of the signature σ under public key pk(p̂)

is denoted by V (pk(p̂),m,σ). We denote encryption of message m under key gk by E(gk,m),

D(gk,c) is the corresponding decryption of ciphertext c. E() is a IND-CPA secure encryp-

tion scheme and D() is the corresponding stateless, deterministic decryption function.

We assume the existence of unambiguous serialization and deserialization functions

encode() and decode() with m = decode(encode(m)) which, respectively, are able to en-

code a data type for transmission over the network and decode a corresponding language-

level data type from the network. We assume that H() is cryptographic hash function that

is collision-resistant (it is computationally infeasible to find two inputs m1 6= m2. such that

H(m1) = H(m2)) and one-way (given a value h it is computationally infeasible to find a

value m such that H(m) = h).

In the following protocol descriptions, we use a Python-like pseudocode to describe

OldBlue’s algorithms. We deviate from Python syntax in a number of ways to ease reading

for those that are less familiar with Python. For example, we use + and - as set union

99



and difference operators respectively, this to represent the current object instead of self,

null in lieu of None, and specify return types for methods.

4.4.1 Initialization

The session begins with a call to CB.open(Processes,Pid,gk,Sid) which will initialize the

following process state for each OldBlue session.

• sid: a nonce used to uniquely identify the current session.

• Pid: process identifier of the local process.

• Processes: set of process identifiers of all members of session sid.

• Requests: priority queue of (pid, set of outstanding requests for pid) tuples main-

tained in least-recently-used order (initially Processes × /0).

• Delivered and Undelivered: maps from message id to delivered and received-but-

not-yet-delivered message objects, respectively (both are initially /0). If a message is

received before one of its causal predecessors, it will remain in Undelivered until all

causal predecessors have been delivered.

• Frontier: set of message id’s of leaves of the causal graph (initially /0). If Frontier

contains the id of message m, the local process has not delivered any messages

causally newer than m.

• Wire: map from message id to transport-level representation of messages to allow

collaborative retransmission (initially /0).

• gk: fresh encryption key for session sid shared by the members of Processes.
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The application is responsible for determining session membership and negotiating a

shared encryption key and a fresh session id for the session (e.g. by executing an appro-

priate Authenticated Group Key Agreement protocol providing a fresh, mutually-authenti-

cated, shared key [12]). We assume that all correct processes initialize their session by

calling CB.open() with the same values of Processes, gk, and sid and differing values of

Pid. CB.open() is defined in Figure 4.1.

CB.open(processes , pid, key, sid):
Processes = processes
Pid = pid
Requests = (Processes , set())
Delivered = set()
Undelivered = set()
Frontier = set()
Wire = set()
gk = key
Sid = sid

Figure 4.1: Definition of CB.open().

4.4.2 Request Fulfillment

At the highest level, OldBlue works as a request fulfillment engine, fulfilling requests in

a fair order as determined by the scheduler. OldBlue’s public methods add requests to

Requests for later fulfillment. OldBlue defines three kinds of Request objects: Outgoing,

LostMsg, and Retransmit. Each Request type has a single message id member (mid)

and defines a fulfill() method which takes the actions necessary to fulfill the request.

Outgoing requests cause messages CB.broadcast() by the local process to be sent to the

network. LostMsg requests ask for retransmission of missing causal predecessors for mes-

sages in Undelivered. Retransmit requests cause retransmission of a message requested
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via a LostMsg received from other processes.

Scheduling constraints are captured by the schedule() method, which dequeues an el-

igible request from Requests subject to OldBlue’s Fairness constraints. schedule() will

block the main thread of execution until a request becomes eligible as determined by the

eligible() function defined in Section 4.3. This leads to straightforward top-level operation

depicted in Figure 4.2.

CB.main():
repeat forever:

(owner , request) = schedule(Requests)
request.fulfill(owner)

Figure 4.2: OldBlue main loop.

In the following discussion we use the simple FIFO scheduling algorithm of Figure 4.3

to ensure fairness. Let Request choose request(process,Requests) capture any criteria

used to discriminate between requests from a given process such as: preferring retransmis-

sions to new messages, preferring retransmissions requested by the most processes, etc.

Other, more complicated algorithms could optimize parameters other than the maxi-

mum sequence between requests fulfilled such as the expected sequence length between

requests fulfilled, etc.

4.4.3 Message Transmission

Transmission of new messages (Figure 4.4) in OldBlue is straightforward. Each Message

encodes the author, the message ids of all immediately causally preceding messages, and

the message payload provided by the application. The message id of each message uniquely

identifies the message within the session by taking a digest over the signed transport-level

102



(process , request) schedule(Requests):
# Where Requests is a list of process id and request queues:
# (p, Rp), (q, Rq), (s, Rs), ...
# Examine in least-recently-serviced order
i = 1
while i <= n:

(p, Rp) = Requests[i]
Ep = [ r for r in Rp if eligible(p, r) ]
if Ep != []:

# p has eligible requests
r = choose_request(p, Ep)
# move p to the end of the list
del Requests[i]
Requests[n] = (p, Rp - set(r))
return (p, r)

i += 1
return null

Figure 4.3: FIFO request scheduling algorithm employed by OldBlue.

payload. This ensures that two messages will have equal message ids if and only if the

authors, message ids of all causal predecessors, message payloads, and signatures over the

preceding fields are identical. As noted by Reiter and Gong [85], including an author’s

signature under the message id, prevents corrupt processes from introducing false causal

dependencies on messages authored by correct processes (to do so would require finding a

collision in the hash function or forging the signature of a correct process). Immediately

self-delivering the message ensures that the self-delivery requirement of Validity is satis-

fied. CB.broadcast() adds an Outgoing request for the message id to the request queue of

the local process.

Fulfillment of the Outgoing request actually broadcasts the message to the other pro-

cesses in the session. authEncrypt() uses a standard Encrypt-then-Sign construction [8]

providing IND-CCA security to prevent forgery of messages by corrupt processes and to
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class Message:
author # ProcId
parentids # Set of MsgId
payload # String
id # MsgId

id CB.broadcast(msg):
m = Message(author=Pid,

payload=msg)
# Immediate causal preds
m.parentids = Frontier
wire_msg = authEncrypt(m)
m.id = H(wire_msg)
Wire[m.id] = wire_msg
# Self-delivery
deliverMessage(m)
addRequest(Pid,

Outgoing(mid=m.id))
return m.id

deliverMessage(m):
Delivered[m.id] = m
Frontier -= m.parentids
# m is now a leaf of
# the causal graph
Frontier += set(m.id)
CB.deliver(m.author , m.id,

m.payload)

Outgoing.fulfill(owner):
send(Processes ,

Wire[this.mid])

String authEncrypt(sender ,
payload):

ctxt = E(gk, encode(payload))
m = encode(Sid, ctxt)
sig = S(sk(Pid), m)
return encode(Pid, ctxt , sig)

# Add req to p’s request queue
addRequest(p, req):
# Find i s.t.
# Requests[i] == (p, R)
Rnew = R + set(req)
Requests[i] = (p, Rnew)

# Remove any requests of p
# equal to req
removeRequest(p, req):
# Find i s.t.
# Requests[i] == (p, R)
Rnew = R - set(req)
Requests[i] = (p, Rnew)

Figure 4.4: Implementation of CB.broadcast()

preserve confidentiality and authenticity despite external adversaries. Replay of messages

across sessions is prevented by including the session id under the signature, ensuring that

the signature will only be valid for the current session. To facilitate retransmission of the

message, the transport-level payload is saved in Wire. The transport-level message also

includes the author’s Pid to allow the message to be retransmitted by processes other than

the author.
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deliverMessage(m) performs the actual delivery of deliverable message m. m is added

to Delivered. m replaces any of its immediate causal predecessors in Frontier and, finally,

m is provided to the application via CB.deliver().

4.4.4 Message Receipt

When a transport-level message is received (Figure 4.5), authDecrypt() verifies that its

signature is valid for the current session and decrypts the message. If any error occurs in

deserialization, signature verification, or decryption, authDecrypt() returns null. Other-

wise, it returns a re-constituted Message or LostMsg object (Section 4.4.5 describes the

handling of LostMsg).

Message.receive() handles the actual processing of the message. It first performs

sanity checks to reject messages with incorrect author fields, senders outside of the process

group, or previously received messages. It then removes any requests to retransmit the

current message that the local process may have initiated. If the new message had any

immediate causal predecessors that have not been received, a request for retransmission

is scheduled by adding a LostMsg request to the request queue for the local process. The

arrival of a message may cause messages in Undelivered to become deliverable. Therefore,

the new message is added to the set of Undelivered messages and all deliverable messages

are delivered.

4.4.5 Message Loss and Retransmission

When a Message arrives before one of its causal predecessors, correct processes assume

that the predecessor has been lost and they will add a LostMsg request to their request
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Upon recv(sender , msg):
au_msg = authDecrypt(msg)
if au_msg != null:

(author , msgOrReq) = au_msg
msgOrReq.receive(author ,

msg)

Object authDecrypt(payload):
parts = decode(payload)
(author , ctxt , sig) = parts
sid_ctxt = encode(Sid, ctxt)
pk = pk(author)
if !V(pk, sid_ctxt , sig):
return null

obj = decode(D(gk, ctxt))
if obj:

return (author , obj)
else:

return null

bool parentsDelivered(msg):
for parent in msg.parentids:

if !Delivered[parent]:
return false

return true

bool shouldDiscard(msg, author):
# Reject pathologies and dupes
return (author != msg.author

or author not in Processes
or Undelivered[msg.id]
or Delivered[msg.id])

Message.receive(author ,
payload):

this.id = H(payload)
if shouldDiscard(this ,

author):
return

# It’s definitely not lost
removeRequest(Pid,

LostMsg(mid=this.id))

# Request missing parents
for parent in this.parentids:
if !Undelivered[parent]

and !Delivered[parent]:
addRequest(Pid,

LostMsg(mid=parent))

# Add to undelivered set
Undelivered[this.id] = this
Wire[this.id] = payload
do:

anyDelivered = false
for msg in Undelivered:

if parentsDelivered(msg):
# msg is deliverable
del Undelivered[msg.id]
deliverMessage(msg)
anyDelivered = true

while anyDelivered == true

Figure 4.5: Implementation of message receipt

queue (Figure 4.6). Fulfillment of the LostMsg request will cause the LostMsg request

to be forwarded to other processes, serving as a negative acknowledgment and requesting

that they retransmit the lost message. The “missing” causal predecessor may not actually

be lost, it may merely arrive after a causally newer message making the LostMsg request
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superfluous. We assume that eligible() delays LostMsg requests in an attempt to minimize

such superfluous requests.

LostMsg.fulfill(owner):
payload = authEncrypt(owner ,

this)
send(Processes , payload)
addRequest(Pid, this)

Retransmit.fulfill(owner):
if Wire[this.mid] != null:

send(set(owner),
Wire[this.mid])

LostMsg.receive(author ,
payload):

if author in Processes:
id = this.mid
req = Retransmit(mid=id)
addRequest(author , req)

Retransmit.receive(author ,
payload):

# internal use only, ignore

Figure 4.6: Implementation of negative acknowledgment and retransmission

Because the LostMsg request itself may be lost, correct processes re-enqueue the

LostMsg request, ensuring that the process will continue to request lost messages until

they are received. Message.receive() will remove the associated LostMsg request from

the local process’s request queue, when the lost message is received.

When a LostMsg request is received from another process, a corresponding

Retransmit request is added to their request queue. When a correct process fulfills a

Retransmit request, it will forward a copy of the lost message to the requesting process.

4.4.6 Satisfaction of Formal Properties

In this section, we provide proofs that OldBlue satisfies the formal properties defined in

Section 4.3.

Theorem 1. schedule() is fair in the sense of Definition 6.

Proof. The proof is by contradiction, suppose that p̂ had an eligible request r at the time
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that some request (ri) was scheduled. Assume there is a sequence of requests

(p̂i,ri), . . . ,(p̂i+n−1,ri+n−1) where no p̂ j = p̂ for i ≤ j < i + n. By assumption, p̂ had

an eligible request during these n invocations of schedule(). Therefore, at each invocation,

schedule() chose an eligible request from the first process with such a request and moved

that process to the end of the list. Thus, there must have been n processes with eligible

requests before p̂ in Requests. This is a contradiction because there are only n processes,

and thus at most n−1 such processes can be ahead of p̂ in Requests.

Theorem 2. OldBlue satisfies Definition 4: Causal Consistency. I.e. no correct process

p̂ will execute CB.deliver(q̂, i,m), until it has delivered all messages m′ which causally

precede m.

Proof. The proof is by contradiction. Suppose that correct p̂ delivers m before delivering a

causally preceding message m1 with id i1. Choose m1 such that p̂ has delivered a message

m2 where m1 is the direct causal predecessor of m2. (Such an m1 and m2 always exist with

m2 possibly equal to m.) Each message contains the ids of immediate causal predecessors,

therefore i1 ∈ m2.parentids. Because p̂ is correct, p̂ delivered some message m′1 6= m1 with

id i1. Because, authDecrypt() is stateless and deterministic, the transport-level messages

decrypting to m′1 and m1 must differ. Therefore, the transport-level messages corresponding

to m1 and m′1 constitute a collision in H() contradicting its collision-resistance assumption

and establishing the proof.

Theorem 3. OldBlue meets Definition 2: Validity. I.e. correct process p̂ self-delivers its

own messages and will deliver any message m from correct process q̂ if the adversary

delivers all associated messages (see Definition 3).

Proof. Self-delivery is immediate by the implementation of CB.broadcast().
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If p̂ does not immediately CB.deliver() m, it is because some m′→ m has not been re-

ceived. p̂ will issue a LostMsg request for m′. Some correct process q̂ holding m′ will

receive the request and eventually retransmit m′ to p̂ because, by assumption, the adver-

sary is delivering all messages associated with m. This process continues until all causal

predecessors of m have been received by p̂, at which time p̂ will CB.deliver() m.

Theorem 4. OldBlue meets Definition 5: Authenticity. I.e. in a session with id sid a correct

process q̂ executes CB.deliver(p̂, i,m) at most once for each value of i and, if p̂ is correct,

then p̂ previously executed CB.broadcast(m) yielding i.

Proof. Message.receive() ensures that at most one message with id i will be delivered.

If a message arrives a message id equal to that of a previously received message in Deliv-

ered or Undelivered, it is ignored.

Suppose correct q̂ executes CB.deliver(p̂, i,m) but p̂ never executed CB.broadcast(m)

yielding i in session sid. Either (1) p̂ never executed CB.broadcast(m) (at all) in session sid

or (2) p̂ executed CB.broadcast(m) yielding j 6= i. In the latter case, the adversary either

(2a) changed the transport-level message, or (2b) she didn’t.

In cases (1) and (2a) the transport-level message that resulted in CB.deliver(p̂, i,m) is

a successful forgery against the INT-CTXT security [8] of the Authenticated Encryption

scheme. In case (2b), because the transport-level message received by p̂ is identical to that

sent by q̂, H() has yielded two different outputs (i and j) for equal inputs, contradicting the

assumption that it is a function.
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4.5 Evaluation

To better understand OldBlue’s performance we created a protocol simulator using NS-3.

We measured OldBlue’s throughput and message delivery latency by sending null mes-

sages in sessions while varying parameters as indicated in Table 4.1.

For each configuration, we simulated three runs of up to 5 minutes of protocol inter-

action with the following simplifying assumptions. Processes use the estimated round trip

time (RTT) to other processes to delay LostMsg requests and retransmissions. Because

estimation is not part of this work, we fixed the estimated RTT to other processes at 4x the

actual RTT. We conservatively estimated that each encryption or decryption operation took

4µs and that each digital signature sign and verify operation took 480µs. These values

were obtained by running a microbenchmark that encrypts and signs 1 KB messages using

AES-128 in CTR mode and RSASSA-PKCS1-v1 5 on our test system – an 8-core Intel

Xeon 2.67 GHz machine with 12 GB RAM running Ubuntu Linux 10.04 x86 64.

All session processes were locally connected to a simulated half-duplex Ethernet LAN

and ran OldBlue over UDP. Because we wanted to test the protocol without assuming hard-

ware or IP multicast, simulated processes unicast messages to all other session processes.

In contrast to the protocol pseudocode above, when a process fulfills a Retransmit re-

quest, it multicasts the lost message to all processes.

Figures 4.7 and 4.8 depict our measurements of the latency and throughput of null

Table 4.1: Simulation parameter choices
Number of processes 2, 3, 5, 10
Packet loss rate 0, 0.01, 0.05, 0.1, 0.2
Round Trip Time (ms) 2, 10, 20, 100, 200
Number of messages 1,000 or 5 minutes of sim. time
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message delivery. In figures which vary RTT the network does not drop any packets. In

figures which vary packet loss rate, the network RTT is fixed at 2 ms. Message delivery

latency is reported in multiples of the network RTT. The latency vs. RTT are ideal in the

sense that, for fixed session size, even as RTT increases the latency remains close to a

constant multiple of the RTT. An optimized implementation should be able to reduce the

overhead. As packet loss rate increases, latency increases.

Because all processes are connected to a simulated half-duplex Ethernet LAN, permit-

ting only one process to transmit at a time, increasing RTT causes a corresponding linear

decrease in the effective bandwidth of the network connection. The graph of throughput

vs. RTT has an approximate slope of −4. This is expected given the 4x overestimate for

RTT that the simulator provides to processes (increasing the effects of increasing RTT

fourfold). As a result, this simulation depicts a pessimistic lower bound for throughput.

An implementation on a more realistic network with an accurate RTT estimation strategy

should show even stronger throughput performance.

Throughput also fairs well under packet loss when network characteristics are taken

into account. Because the simulator simulates broadcast by n unicasts a lost message will

create 2 ·n additional messages in the best case (n LostMsg requests and a retransmission

to n processes). In most cases, the decrease in throughput is consistent with approximately

2 ·n additional messages being sent as the result of each message loss.

Examining the effect of session size on throughput and latency we see that these per-

formance metrics appear to decrease proportional to the square of the group size. This is

unsurprising due to total amount of traffic between all processes growing proportionally

to the square of the number of processes because of the use of direct unicast between all

processes.
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Figure 4.7: Null message delivery latency for sessions of various size with varying RTT
(top) and loss rate (bottom).
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4.6 Implementation Considerations

In the foregoing discussion, we have presented simplified primitives for clarity and ease

of analysis. Real-world implementations must address a number of additional trade-offs.

However, as long as the basic assumptions of the primitives presented above are not vio-

lated, implementers can be certain that the implementation will satisfy its formal properties.

Limiting Process State. In practice, the amount of state that a process must maintain

must be limited. The size of Delivered and Wire can be limited by garbage collecting mes-

sages that will not require retransmission (i.e. stable messages which have been delivered

by all processes). The adversary can prevent any message from becoming stable by caus-

ing a corrupt process to refuse to deliver it or refusing to transmit an associated message to

a correct process, essentially disconnecting the affected process and forcing all connected

correct processes to retain all causally newer messages. The protocol will eventually need

to block the application or end the session. In this scenario, implementations should enable

the application to determine if it should block or end the session by notifying it of the set

of unstable messages and the processes that have not delivered them.

The size of Undelivered can be bounded by fixing a maximum (LU) and storing only

the LU causally-oldest messages from each process. The causal ordering over all mes-

sages from a given process can be trivially determined if each correct process includes a

monotonically increasing sequence number in each message.

The size of Requests can be limited by fixing a maximum number of unsent outgoing

messages that may be enqueued before blocking the application, generating LostMsg re-

quests on-demand when a LostMsg request may be sent, and including a sequence number

in LostMsg requests so that processes need only store Retransmit requests for the LL
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most recent LostMsg requests from each process.

Minimizing Unnecessary Retransmission Requests. The protocol above enqueues

LostMsg requests whenever a message arrives before one of its causal predecessors. To

avoid sending LostMsg requests for messages that have merely been delayed, implemen-

tations must delay sending LostMsg requests for a reasonable amount of time. Allowing

LostMsg requests to represent more than one message id can further reduce the number of

messages sent.

Minimizing Duplicate Retransmissions. Processes in the protocol above broadcast

LostMsg messages to all session members and all correct session members will retransmit

the message to the requesting process. Techniques to minimize duplicate retransmissions

must take into account the properties of the underlying network channel. However, imple-

mentations can reduce duplicate retransmissions by having processes request lost messages

from other processes one-by-one, allowing explicit cancellation of Retransmit requests,

or automatically canceling Retransmit requests for any process p̂ for any messages that

are causally older than a newly-received message authored by p̂.

Congestion Control. In order to make efficient use of network resources, implementa-

tions should implement a congestion control mechanism. In our design, congestion control

is encapsulated by the eligible() function which requires that for each process p̂ or request

r that is not eligible at time t will eventually become eligible at some time t ′ > t. Thus con-

gestion control may only delay fulfillment of a request for a finite span of time. In order

to coincide with an intuitive understanding of the Fairness definition, c corrupt processes

should only be able to affect the congestion control mechanism proportional to c
n .
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In a unicast implementation, we believe fair congestion control can be achieved by

maintaining a separate outstanding message window for each process. The window size

is increased only when the associated process proves the ability to receive messages at the

current rate. The window size is decreased in response to authenticated retransmission

requests from the process or the absence of such proofs.

In a multicast implementation, we believe fair congestion control can be achieved by

maintaining separate window sizes as in the unicast case, and taking their average to cal-

culate a single outgoing window size.

Strengthening Validity. Our Validity definition does not require a correct process to

deliver a message if the adversary does not deliver all associated messages. However, as

a matter of practicality, we’d like processes to learn if the most recent message in a low-

rate session is lost. This can be aided by sending a heartbeat message if a chosen time

threshold elapses since the last new outgoing messages was sent. The heartbeat message

should include the contents of Frontier to allow processes to determine if they have missed

a message. Heartbeat messages should be sent outside of the causal ordering so that lost,

or delayed, heartbeat messages will not be retransmitted.

4.7 Related Work

Broadcast protocols for distributed systems and mechanisms for preserving various order-

ing properties have a long history in the literature. Despite this, we are aware of only one

protocol [61], developed concurrently with OldBlue, that provides always-available Causal

Broadcast in the threat model of Section 4.2. Many protocols [68, 3, 82, 40, 11] are not se-
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cure against Byzantine adversaries that can corrupt system members. Many protocols that

are secure against a Byzantine adversary [46, 21, 86, 6, 55] either cannot ensure liveness

among connected processes during a network partition or are not resilient to adversaries

which can corrupt t ≥ n
3 nodes. We compare concepts shared by most of these systems

with OldBlue’s requirements below.

Psync. The causal broadcast property provided by OldBlue was partially inspired by

Psync [82]. Psync provides causally ordered IPC for distributed systems in an environ-

ment subject to benign failures. Because Psync assumes that processes are correct, it is

susceptible attack by corrupt processes. For instance, a duplicitous process can cause cor-

rect processes to deliver conflicting messages leading to differing causal histories. There is

no mechanism to ensure that correct processes will learn that their views differ during sub-

sequent communication. Psync does not attempt to enforce fairness. This allows corrupt

processes to expend the resources of correct processes unchecked.

Reliable Broadcast. The properties of OldBlue are very similar to, and were inspired by,

Reliable Broadcast. Reliable Broadcast provides a mechanism to broadcast messages such

that all correct processes deliver the same set of messages and all correct processes deliver

all messages broadcast by all correct processes. Hadzilacos and Toueg [46] demonstrate

that Reliable Broadcast can be extended in a modular fashion to provide various guarantees

on message delivery order.

A protocol provides Reliable Broadcast if it ensures the following four properties, as

given by Cachin et al. [21]. In the following, each message is associated with a tag. The

tag ID. j.s is used to indicate the message with sequence number s sent by correct process

Pj in session ID.
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R-Validity If a correct process has r-broadcast m tagged with ID. j.s, then all correct pro-

cesses r-deliver m tagged with ID. j.s, provided all correct processes have been acti-

vated on ID. j.s and the adversary delivers all associated messages.

R-Consistency If some correct process r-delivers m tagged with ID. j.s and another correct

process r-delivers m′ tagged with ID. j.s, then m= m′.

R-Totality If some correct process r-delivers a message tagged with ID. j.s, then all correct

processes r-deliver some message tagged with ID. j.s, provided all correct processes

have been activated on ID. j.s and the adversary delivers all associated messages.

R-Authenticity For all ID, senders Pj, and sequence numbers s, every correct process r-

delivers at most one message m tagged with ID. j.s. Moreover, if Pj is correct, then m

was previously r-broadcast by Pj with sequence number s.

The definition of OldBlue purposefully differs from Reliable Broadcast in the following

ways:

1. R-Validity requires a correct process to r-deliver a message only if the adversary

delivers all associated messages. By contrast, Validity (Definition 2) ensures liveness

among processes in a connected component during a network partition by requiring

any q̂ that receives all messages associated with CB.broadcast(m) to deliver m.

2. R-Totality ensures that all correct processes deliver the same set of messages regard-

less of the correctness of the author. This precludes liveness during arbitrary network

partitions. E.g. When each correct p̂ delivers m, p̂ must send “associated messages”

such that all other correct q̂ will also deliver m. Causal Consistency (Definition 4)
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is limited to pairwise guarantees, between a correct sender and deliverer, to allow

liveness during partition.

3. Authenticity (Definition 5) provides both R-Consistency and R-Authenticity.

Consistent Broadcast. A Consistent Broadcast [21] protocol satisfies R-Validity, R-

Consistency, and R-Authenticity above but not R-Totality. As noted above, R-Validity

conflicts with our requirements. Therefore, Consistent Broadcast is unsuitable for our pur-

poses as well.

Byzantine Agreement. Byzantine Agreement, the Byzantine Generals’ Problem [57],

and the closely related Consensus [46] Problem, refer to the problem of ensuring that all

processes in a distributed system agree on a value proposed by one, or more, processes.

Like Reliable Broadcast, any protocol which depends on Byzantine Agreement is incom-

patible with OldBlue’s formal requirements. The agreement property of Byzantine Agree-

ment is similar to R-Totality – if a correct process decides x, all correct processes eventually

decide x and, if the proposing process was correct, x was the value proposed. Unless all

messages are known a priori, this property is incompatible with Validity – processes in a

connected component must be able to deliver messages even during a network partition.

CAP and CAC. As mentioned in Section 4.1, the CAP Theorem [19, 42] states that,

during a network partition, a distributed system cannot maintain availability while pre-

serving consistency. The specific consistency notion used in the impossibility proofs of

[42] is atomic consistency. This prompted a shift in distributed databases toward weaker

consistency guarantees [32, 108], such as eventual consistency, that are compatible with

always availability. After the development of OldBlue, we have become aware of recent
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work by Mahajan et al. [61] which extends the results of [42] in a slightly different frame-

work. The CAC model of [61] reframes the problem in terms of Consistency, Availability,

and Convergence. Consistency restricts the order that system events appear to occur. For

example, FIFO consistency requires that messages from a single author are delivered in

the order they were sent without placing ordering constraints on messages from different

authors. Causal consistency is stronger, requiring that messages be delivered in causal or-

der. Availability specifies which system operations are guaranteed to complete under any

failure conditions allowed by the network model. For instance, in an always available im-

plementation, if nodes p̂ and q̂ can communicate and p̂ issues a read or write to q̂, that

read or write will complete regardless of which messages to other nodes are lost. Conver-

gence ensures that when two nodes can communicate, in the absence of further updates,

that they will reach the same end state. Convergence deserves explicit treatment because

some consistency models, such as fork-causal consistency [61], achieve always availabil-

ity and consistency by sacrificing convergence — in the instance of a duplicitous adversary

that partitions the group into P1 and P2 and sends concurrent messages to each partition

(m1 6= m2, respectively), under fork consistency partitions P1 and P2 are never permitted to

rejoin and arrive at a shared, consistent, global state.

Given these definitions, Mahajan et al., show that, in a Byzantine environment where

network partitions may occur, no distributed system can remain always available and con-

vergent while ensuring a number of different causal consistency properties. Therefore, this

impossibility result also applies to stronger consistency notions such as Reliable Broadcast,

Consensus, and Byzantine Agreement. The authors then present a variant of causal con-

sistency, bounded fork join causal consistency, that is compatible with always availability

and convergence in a Byzantine environment. Bounded fork join causal consistency has
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three key differences when compared to other causal consistency definitions: it limits its

serial operation ordering requirement to correct nodes, it allows correct nodes to observe

concurrent writes by a Byzantine nodes, and correct nodes bound the number of concurrent

writes that Byzantine nodes can perpetrate by proactively detecting concurrent writes and

refusing to accept subsequent writes by known-Byzantine nodes that have not already been

accepted by another correct node.

Knowing that no restriction can be placed on the behavior of a Byzantine process, we

carefully defined all of OldBlue’s properties in terms of pairwise guarantees about the op-

erations of correct processes. In OldBlue’s definition of Causal Precedence (Definition 1),

clauses (2) and (3) restrict serial operation ordering to correct processes and clause (3) al-

lows correct processes to observe concurrent messages from Byzantine processes without

violating causal ordering because the causal order of a message is not defined until it is de-

livered by a correct process. In this way, OldBlue does not fall victim to the impossibility

result of [61] and an OldBlue implementation in which correct processes proactively detect

duplicitous processes and cease to deliver messages from them provides bounded fork join

causal consistency.

KleeQ. KleeQ [84] is a protocol that provides confidentiality and consensus for group

communication between ad-hoc groups of processes with intermittent connectivity. Be-

cause the authors of KleeQ target the benign failure model, KleeQ does not attempt to

enforce Fairness between processes. As presented, even in the presence of Byzantine ad-

versaries, KleeQ will ensure Validity, Authenticity, and eventual detection of Causal Con-

sistency violations.

In OldBlue, we prefer to prevent violations of Causal Consistency in the first place
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rather than attempting to detect them at a later time. Because KleeQ is designed to operate

over ad-hoc networks with intermittent connectivity, it does not take advantage of broadcast

and multicast capabilities or regular connectivity between processes. Interactions between

processes are accomplished pairwise, preventing opportunistic load balancing. Thus, to

some extent, OldBlue can be viewed as a complementary protocol for the traditional net-

work setting which addresses Byzantine failures at the outset.

4.8 Future Work

In this work, we have made certain simplifying assumptions that should be addressed by

future work. For example, we used the eligible() function to abstract strategies which bal-

ance timely detection of losses against minimization of unnecessary retransmissions and

congestion control. The strategies employed by current Internet transport protocols have

not been designed to guarantee correct operation in a Byzantine environment. Further

research is necessary to provide multicast congestion control, loss detection, and retrans-

mission delay strategies that are guaranteed to function properly in the Byzantine setting.

Another simplifying assumption that will need to be addressed in practice is session

initiation. In our model, a session begins when CB.open() is invoked with the set of par-

ticipants which will take part in the current session. However, as discussed in [16], just

determining when a session has or has not started successfully and between which partici-

pants is not straightforward in a Byzantine environment. In practice, a session membership

algorithm which resists Byzantine failures will need to be employed.

It may also be possible to provide stronger consistency guarantees in times of full con-

nectivity when few Byzantine failures occur. OldBlue adopts a pessimistic approach, as-
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suming that each session may always be in a worst-case scenario. However, the impossi-

bility results of the CAP and CAC theorems apply to times of network partition. It is likely

that systems could provide stronger consistency guarantees in times of full connectivity,

only relaxing those guarantees to causal consistency in order maintain availability when a

partition occurs. This approach may also lead to a number of opportunities for network

performance optimization.
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Chapter 5

Conclusions and Future Work

The intuition and instincts which serve to protect us in the physical world may not be suf-

ficient to keep us safe online. While major advances in user experience have brought us

computing systems that are increasingly intuitive to operate, the hardware and software

systems users operate daily have increased in complexity by orders of magnitude, further

obscuring the precise technical details of their operation from the average user. As a re-

sult, common Internet protocols fail to meet users’ reasonable security expectations in a

number of ways. In this work we address three major issues in communication privacy and

integrity: software integrity in web applications, secure multi-party instant messaging, and

integrity in distributed communication protocols subject to Byzantine failures.

As the web has matured, the capabilities of web browsers have evolved from merely

displaying static documents to providing a general purpose computing platform capable of

simultaneously running multiple client-side applications from different origins. To protect

the privacy and integrity of application data, web browsers attempt to enforce isolation

between application code from different origins. Unfortunately, cross-site scripting (XSS)
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vulnerabilities allow attackers to violate isolation between origins by laundering malicious

code through a trusted server. In Chapter 2, we presented Noncespaces, an end-to-end sys-

tem for preventing XSS attacks. The core insight of Noncespaces is that if the server can

reliably identify and annotate untrusted content, the client can enforce flexible policies that

prevent XSS attacks while safely allowing rich user-contributed content. The core tech-

nique of Noncespaces uses randomized (X)HTML tags to identify and annotate untrusted

content, similar to the use of Instruction Set Randomization to defeat binary code injec-

tion attacks. Noncespaces frees the server from the burden of sanitizing untrusted content,

avoiding all the difficulties and problems with sanitization. Once the server annotates a

document node as untrusted, no malicious content in the document node may escape the

node or raise its trust classification. Noncespaces-aware clients can reliably prevent all

the attacks that the configured web application policy prohibits, and even Noncespaces-

unaware clients can prevent node-splitting attacks. We implemented a prototype of Non-

cespaces as an extension to a popular web application template system and a client-side

proxy and show via experimentation that the overhead of our prototype Noncespaces im-

plementation is moderate.

In Chapter 3 we turned our attention to another online communication medium, Instant

Messaging (IM). Instant messaging is popular for real-time interactive communication on-

line and can be used in environments where the server-must-be-trusted security model of

the web is an ill fit. Unfortunately, most modern IM protocols fail to ensure confidentiality

or integrity in situations where the network and/or the server cannot be trusted. OTR [13]

brings confidentiality, integrity, and deniability guarantees to two-party IM conversations.

However, before our work, there was no solution that provided strong security guarantees

for multi-party conversations. Our proposed framework for multi-party Off-the-Record
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communication (mpOTR) does not depend on a central server; instead we developed a

model that mimics a typical private meeting where each user authenticates the other partic-

ipants for himself. We identified three main goals for mpOTR: confidentiality, consensus,

and repudiation. We achieve confidentiality via standard cryptographic measures. Con-

sensus is based on unforgeable signatures which allow non-repudiation among chatroom

participants. Repudiation in front of non-chatroom participants is based on a user’s ability

to disassociate from the signing key pair. The crucial step in our solution is the distri-

bution of chatroom-specific signature keys, which become the authentication mechanism

during the chat. Deniability is a consequence of the forward secrecy and deniability of the

key agreement protocol that is used to establish authentic, confidential, deniable channels

between pairs of parties.

Though mpOTR provides a basic framework for confidential, deniable multi-party in-

stant messaging there are a number of ways that chat servers and malicious insiders can

seek to violate consensus or induce resource starvation between honest chat participants.

These issues are not unique to mpOTR, they must be addressed by any distributed group

communication protocol which operates in a Byzantine environment. Unfortunately, nearly

all previous solutions are either insecure in a Byzantine environment or sacrifice avail-

ability when network partitions occur. This prompted us to develop OldBlue, a causal

broadcast protocol for distributed group communication (described in Chapter 4). OldBlue

guarantees causal consistency and availability between connected participants while toler-

ating an arbitrary number of Byzantine failures. We have formally defined the availability,

consistency, and authenticity properties that OldBlue seeks to achieve. We provide prelim-

inary simulation results to better characterize OldBlue’s network performance and prove

that the proposed protocol satisfies the formal definitions. Recent research [61] shows
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that the consistency guarantees provided by OldBlue appear to be close to the strongest

achievable for an always available distributed system in a Byzantine environment.

5.1 Future Work

While we feel that this work advances the state of the art in information security in several

online areas, with the rapid pace of technological change, we would be foolish to think that

we have closed the book on any of these matters. Here we briefly consider directions for

future research.

5.1.1 Cross-Site Scripting (XSS) Defenses

As can be seen from Noncespaces’ related work section (Section 2.6), there have been a

myriad of approaches to solve XSS both before and after Noncespaces. And yet, XSS still

continues to be a major problem years since Noncespaces initial publication in 2009. The

web has a significant legacy application problem on two separate fronts: server-side and

client-side. Server-side web applications in use today have been built from a wide range

of frameworks and languages, making it difficult to provide server-side protection mecha-

nisms that transcend language and software architecture boundaries. Web application de-

velopers that wish to employ the latest defenses are faced with visitors using a wide array

of browser families and versions on a variety of platforms that may not support the latest

client-side technologies and which may have any number of vendor-specific non-standard

quirks [83] that introduce opportunities for ambiguity between the client and server.

This is not to say that there has not been progress. A number of template systems

have integrated some form of auto-sanitization [29, 81, 103, 41], which attempts to auto-
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matically identify and neutralize malicious inputs, making it easy to provide better protec-

tion for new applications. However, in many cases [41, 103], the sanitization is context-

insensitive leading to the possibility of incorrect sanitization and compromise. Content

Security Policy has become a W3C Candidate Recommendation [99] and is being imple-

mented in recent versions of Firefox, Chrome, Safari, and Internet Explorer. [30] However,

it will still be some time before any one solution reaches universal adoption. Which of

the variety of approaches will provide the best security-effort tradeoff is still unknown. If

a language-agnostic solution that could protect legacy server-side code while maintaining

compatibility with legacy browsers could be found, it would likely outdistance all efforts

to date.

5.1.2 Confidential Multi-Party Communication

In Section 3.5 we highlighted a number of areas of future work for mpOTR, many of

which were addressed by OldBlue. However, there are areas where further progress can be

made. For example, the development of specialized primitives could improve the efficiency

of mpOTR’s cryptographic operations. The pairwise Deniable Signature Key Exchange

algorithm presented is an obvious target for improvement. Combining the Group Key

Agreement that must already be performed with a multi-party Deniable Signature Key

Exchange protocol would be likely to reduce its overhead significantly.

Alternate notions of deniability are another interesting area for future research. After

examining other notions of deniability [22, 34], we settled on deniability through forge-

ability of valid transcripts by an outsider as the appropriate deniability notion for mpOTR.

There are multiple algorithms compatible with this notion [53, 14, 69]. However, other

definitions of deniability are possible and may have unexpected benefits over the notion
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employed by mpOTR.

5.1.3 Causal Broadcast in a Byzantine Environment

There are several areas for future work outlined in Section 4.8. The two most interesting

are providing stronger consistency properties in the optimistic case and fair use of network

resources with existing Internet protocols. A number of Byzantine Agreement protocols

contain optimizations which allow greater performance when processes are behaving cor-

rectly and which fall back to a pessimistic protocol in the presence of Byzantine behav-

ior [23, 55, 28]. When all participants are fully connected and no nodes are known to be

Byzantine, it may be possible to provide stronger consistency while gracefully degrading

to causal consistency when a network partition or Byzantine behavior is observed.

New Internet transport protocols are expected to be TCP-friendly: that is, they should

use no more than a proportional fair share of network resources when run alongside TCP

sessions. In practice, this means implementing congestion control models which achieve

the same average flow rates as TCP. The multicast paradigm of OldBlue, collaborative re-

transmission which allows a lost message authored by p̂ to be retransmitted by another

process q̂, and the possibility that any other process may be Byzantine all complicate the

goal of ensuring TCP-friendly congestion control for OldBlue. DCCP [52] attempts to pre-

vent malicious peers from lying about network congestion conditions in order to provide

TCP-friendly congestion control for two-party unreliable network communication. Inves-

tigation of the applicability of DCCP’s, or other multicast congestion control schemes, to

the maximally Byzantine setting may yield interesting results.
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