
Noncespaces: Using Randomization to Enforce Information Flow Tracking and

Thwart Cross-Site Scripting Attacks

Matthew Van Gundy and Hao Chen

University of California, Davis

E-mail: mdvangundy@ucdavis.edu, hchen@cs.ucdavis.edu

Abstract

Cross-site scripting (XSS) vulnerabilities are among the

most common and serious web application vulnerabilities.

Eliminating XSS is challenging because it is difficult for web

applications to sanitize all user inputs appropriately. We

present Noncespaces, a technique that enables web clients

to distinguish between trusted and untrusted content to pre-

vent exploitation of XSS vulnerabilities. Using Nonces-

paces, a web application randomizes the XML namespace

prefixes of tags in each document before delivering it to the

client. As long as the attacker is unable to predict the ran-

domized prefixes, the client can distinguish between trusted

content created by the web application and untrusted con-

tent provided by an attacker. To implement Noncespaces

with minimal changes to web applications, we leverage a

popular web application architecture to automatically ap-

ply Noncespaces to static content processed through a pop-

ular PHP template engine. We show that with simple poli-

cies Noncespaces thwarts popular XSS attack vectors.

1. Introduction

Cross-site scripting (XSS) vulnerabilities constitute a se-

rious threat to the security of modern web applications. In

2005 and 2006, the most commonly reported vulnerabilities

were cross-site scripting vulnerabilities [14]. XSS vulner-

abilities allow an attacker to inject malicious content into

web pages served by trusted web servers. Since the mali-

cious content runs with the same privileges as trusted con-

tent, the malicious content can steal a victim user’s pri-

vate data or take unauthorized actions on the user’s be-

half. To prevent XSS vulnerabilities, all the untrusted (user-

contributed) content in a web page must be sanitized. How-

ever, proper sanitization is very challenging. The server can

sanitize the content. But, if the browser interprets the con-

tent in a way that the server did not intend, attackers can

take advantage of this discrepancy. The Samy worm [19],

one of the fastest spreading worms to date, exemplified this.

Alternatively, one could let the client sanitize untrusted con-

tent. Without the server’s help, however, the client cannot

distinguish between trusted and untrusted content in a web

page since both are provided by the server.

After the server identifies untrusted content, it needs to

tell the client the locations of the untrusted content in the

document tree. However, if the untrusted content (without

executing) could distort the document tree, it could evade

sanitization. To achieve this, the untrusted content could

contain node delimiters that split the original node where

untrusted content resides into multiple nodes. This is known

as a Node-splitting attack [8]. To defend against this attack,

the server must remove all node delimiters from untrusted

content, but doing so would restrict the richness of user pro-

vided content.

We present Noncespaces, a mechanism that allows the

server to identify untrusted content and reliably convey this

information to the client, and that allows the client to en-

force a security policy on the untrusted content. Non-

cespaces is inspired by Instruction Set Randomization [9],

which randomizes the processor’s instruction set to identify

and defeat injected malicious binary code. Analogously,

Noncespaces randomizes XML namespace prefixes to iden-

tify and defeat injected malicious web content. These ran-

domized prefixes serve two purposes. First, they identify

untrusted content so that the client can enforce a security

policy on them. Second, they prevent the untrusted con-

tent from distorting the document tree. Since the random-

ized tags are not guessable by the attacker, he cannot em-

bed proper delimiters in the untrusted content to split the

containing node without causing XML parsing errors.

We make the following contributions:

• We draw the analogy between injected code in exe-

cutable programs and injected content in web pages to

apply the idea from Instruction Set Randomization to

defend against XSS attacks.

• We observe that current web application design prac-

tices lead to simple, effective policies for defending

against popular XSS attack vectors.

• We modify a popular template engine to facilitate au-

tomatic deployment of our technique.

• We define a flexible yet simple policy language for

client-side policy enforcement.

2. Cross-Site Scripting Vulnerabilities

Noncespaces defends against cross-site scripting (XSS)

vulnerabilities. An XSS vulnerability allows an attacker to

inject malicious content into a web page returned by a legit-

imate web server to an unsuspecting client. Typically, when

the client receives the document, it cannot tell the difference

between the legitimate content provided by the web appli-

cation and the malicious payload injected by the attacker.

The malicious content can disclose private data or authenti-

cation credentials allowing the attacker to impersonate the

client to the web application, or can run malicious code in-

side the client.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

2 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

3 <html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en">

4 <head>

5 <title>nile.com : ++Shopping</title>

6 </head>

7 <body>

8 <h1 id="title">{item_name}</h1>

9 <h2>Description</h2>

10 <p id=’description’>{item_description}</p>

11 <h2>Reviews</h2>

12 <div id=’reviews’>

13 {foreach review in reviews}

14 <p class=’review’>{review.text}

15 -- {review.author}</p>

16 {/foreach}

17 </div>

18 </body>

19 </html>

Figure 1. Vulnerable web page template used

to render dynamic web pages

Figure 1 shows a web page template used by a fictitious

web application to render dynamic web pages. The tem-

plate is written in a language similar to Smarty where con-

tent between “{” and “}” characters denotes instructions to

the template engine [18]. “{identifier}” instructs the tem-

plate engine to replace the string by the value of the variable

given by identifier. “{foreach identifier1 in identifier2}
content {/foreach}” instructs the template engine to eval-

uate content repeatedly, once for each member in the array

variable named by identifier2, binding the variable named

by identifier1 to the current element of the array for each

iteration.

If the web application fails to properly sanitize user

input, pages rendered from this template may be vulnerable

to XSS attacks. For instance, if an attacker can submit

“<script src=’http://badguy.com/attack.js’/>”

as a review, the template variable review.text will be as-

signed this string during one iteration of the foreach loop.

When a client visits the page, the client’s web browser will

download and execute http://badguy.com/attack.js

with the permissions of the web application.

There are a number of ways by which an XSS vulnerabil-

ity can appear in a document. We call these attack vectors.

The following are common attack vectors:

• tag body: Malicious content embeds new tags in

the body of another tag. E.g. review.text =

<script>attack()</script> in the template in Fig-

ure 1.

• node splitting: Malicious content closes previ-

ously opened tags to traverse up the document

tree. This attack can defeat a security policy that

constrains the capabilities of code based on its posi-

tion in the document hierarchy. E.g. review.text =

</p></div><script>attack()</script><div><p>

• attribute value: The malicious content embeds a ma-

licious attribute value that violates security without

escaping from the attribute’s enclosing quotes. E.g.

review.contact = javascript:attack()

• attribute splitting: An attribute value breaks

out of its enclosing quotes and defines a

new attribute. E.g. review.contact = ’

onclick=’javascript:attack()

• tag splitting: An attribute value breaks out

of the currently open element to define

new elements. E.g. review.contact =

’><script>attack()</script>

In addition to the numerous vectors that an XSS attack

may exploit, discrepancies in parsing HTML can cause the

client to interpret content in ways not anticipated by the

server. The XSS Cheat Sheet [16] catalogs numerous exam-

ples of (often non-intuitive) character sequences that may

lead to script execution in various clients.

In this paper, we restrict our attention to XSS attacks

where the attack delivers malicious content to the victim

user via a trusted server. We do not address Cross-Site

Request Forgery (CSRF) attacks, where a malicious web

server tricks the client into sending a malicious request to a

trusted web site. We also do not address Universal Cross-

Site Scripting Vulnerabilities [17] where a browser exten-

sion can be tricked into violating the browser’s own security

policy.

Figure 2. Noncespaces Overview. The server delivers a XHTML document with randomized names­

pace prefixes and a policy to the client. The client accepts the document only if it is a well­formed

XML document and satisfies the policy.

3. Noncespaces

The goal of Noncespaces is to allow the client to reliably

distinguish between trusted content generated by the web

application and untrusted content provided by an untrusted

user when they appear together on the same web page. To

accomplish this goal, the web application partitions content

on a web page into different trust classes. A policy specifies

the browser capabilities that each trust class can exercise.

This way, an attacker’s malicious content can do no more

harm than what the policy allows for its trust class.

Noncespaces involves both server-side and client-side

components. The server annotates every element and at-

tribute of the delivered XHTML document with a trust clas-

sification. We represent each trust class by a random XML

namespace prefix. As long as the attacker cannot guess the

random prefix, his malicious content cannot change its trust

classification. The server also delivers a policy that speci-

fies which elements, attributes, and values are permitted for

each trust class. The user’s browser then verifies that the

parsed document conforms to the policy. This process is

depicted in Figure 2.

3.1. Document Annotation with Trust Classes

To check the conformance of a document against a pol-

icy, the client must be able to determine the trust class of ev-

ery element and attribute in the document. Since the server

annotates each element and attribute with its classification

and does not sanitize the content, the server must ensure

that malicious content cannot change its trust classification.

The server could use a designated attribute to indicate the

trust class of an element. However, malicious content may

contain elements which forge the attributes that designate

trusted content. Alternatively, the server could indicate the

classification by the ancestry of a node, e.g. restricting the

capabilities of all descendents of a specific document node

– a sandbox node. However, malicious content may con-

tain tags that split its original enclosing node into multiple

nodes so that malicious nodes are no longer descendents

of the sandbox node. This is the node-splitting attack dis-

cussed in Section 2. Another alternative, directly inspired

by ISR, is to remap the character set used in the page or the

names of elements and attributes so that no injected con-

tent could correctly name XHTML elements or attributes.

This approach will not work because documents delivered

by web applications incorporate dynamic content. There-

fore, we must support some (limited) amount of dynamic

content for our solution to be useful.

To reliably annotate content with a trust classification

without having to sanitize the content, we use randomized

XML namespace prefixes. To illustrate this solution, we

draw an analogy between buffer overflow attacks and XSS

attacks. During a typical buffer overflow attack, the at-

tacker injects malicious binary code in the overflown buffer.

Similarly, during an XSS attack, the attacker injects ma-

licious web content. Our solution is inspired by Instruc-

tion Set Randomization. Instruction Set Randomization de-

fends against binary code injection attacks by randomly per-

turbing the instruction set of an application. If an attacker

wishes to inject code into the application, she must cor-

rectly guess the randomization used. This is very difficult if

the number of randomizations possible is sufficiently large.

The attacker is effectively prevented from injecting code be-

cause she cannot name the instructions with the desired se-

mantics with sufficient probability.

XML namespaces qualify elements and attributes [4] by

associating them with namespaces identified by URL refer-

ences. To denote the namespace of a tag, the user chooses

a string as the prefix of the tag and associates the prefix

with the namespace URI in the document. The namespace

determines the semantics of a tag. For instance, both <p:a

xmlns:p=’http://www.w3.org/1999/xhtml’> and

<q:a xmlns:q=’http://www.w3.org/1999/xhtml’>

specify the <a> tag in the XHTML namespace

(http://www.w3.org/1999/xhtml). XML names-

paces are typically used for distinguishing tags that have

the same name but different semantics. We leverage

namespace prefixes to annotate the trust class of each

element and attribute in the document. In other words,

each namespace prefix string indicates the trust class of the

element or attribute.

To prevent an attacker from forging the trust class desig-

nating trusted content and to prevent untrusted content from

escaping from its enclosing node (e.g. the node-splitting at-

tack), we must prevent the attacker from guessing the appro-

priate namespace prefix, i.e. that denoting the trust class of

trusted content. Otherwise, the attacker can embed a clos-

ing tag with the correct prefix in his malicious content to

escape from the current node. To this end, the application

developer defines a prefix space of appropriate size and we

randomly choose the namespace prefixes from this space

on every document delivery – hence the term Noncespaces.

For instance, if we annotate the document from Figure 1

with the randomly chosen prefix r617 to indicate trusted

code and the empty prefix to indicate untrusted code, the

resulting document is shown in Figure 3.

As illustrated by the embedded node-splitting attack, the

attacker cannot inject malicious content and cause it to be

interpreted as trusted because he does not know the ran-

dom prefix (r617 in this case). He also cannot escape from

the node, because he does not know the random prefix and

therefore cannot embed a closing tag with this prefix. When

a closing tag tries to close an open tag but the prefixes of the

two tags do not match, the XML parser will fail with an er-

ror.1

Since the server chooses new random prefixes each time

it serves a document, even if the attacker knows the pre-

fixes in one instance of the document, he cannot predict the

prefixes in future instances of the document.

1A subtlety occurs when two different prefixes, say a and b, are asso-

ciated with the same URI. In this case, is “<a:foo></b:foo>” valid? One

may be tempted to think that “<a:foo></b:foo>” is valid because a:foo

and b:foo denote the same expanded name. However, XML 1.0 [5] spec-

ifies that closing tags are matched to opening tags lexically. It is an XML

error to close <a:foo> with </b:foo> even if a and b are mapped to the

same URI. This implies that Noncespaces needs to randomize only names-

pace prefixes, but not the URIs that the prefixes are associated with.

1 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.1//EN"

2 "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd">

3 <r617:html xmlns="http://www.w3.org/1999/xhtml"

4 xml:lang="en"

5 xmlns:r617="http://www.w3.org/1999/xhtml">

6 <r617:head>

7 <r617:title>nile.com : ++Shopping</r617:title>

8 </r617:head>

9 <r617:body>

10 <r617:h1 r617:id="title">Useless Do-dad</r617:h1>

11 <r617:h2>Description</r617:h2>

12 <r617:p r617:id=’description’>Need we say more.</r617:p>

13 <r617:h2>Reviews</r617:h2>

14 <r617:div r617:id=’reviews’>

15 <r617:p r617:class=’review’>

16 </p></div><script>attack()</script><div><p>

17 --

18 </r617:p>

19 </r617:div>

20 </r617:body>

21 </r617:html>

Figure 3. Random prefix applied to trusted

content in an XHTML document containing a

node­splitting attack injected by a malicious
user

Using XML namespace prefixes to represent trust classes

has several benefits. First, XHTML 1.0 compliant browsers

support XML Namespaces and therefore, with a little help

from client-side JavaScript2, are able to render the trans-

formed document as intended, even if they cannot check

Noncespaces policies. Second, using namespaces allows

us to use the standard XPath language in our policies with

a minor semantic difference. In plain XPath, expressions

match against the expanded name (namespace URI + lo-

cal (tag) name) of an element. In our XPath policy expres-

sions, the prefix used in the expression must match the pre-

fix used in the document. Finally, using randomized names-

pace prefixes defeats node-splitting attacks by turning them

into XML well-formedness errors.

3.2. Policy Specification

A Noncespaces policy specifies what browser capabili-

ties are allowed for each trust class. We designed the policy

language to be similar to a firewall configuration language.

A Noncespaces policy consists of a sequence of rules. Each

rule describes a set of nodes using an XPath 1.0 expres-

sion and specifies a policy decision – either allow or deny

– to apply to these nodes. An XPath expression can select

2XHTML specifies that most attributes should appear unqualified.

Therefore, for non-Noncespaces-aware browsers, we must unprefix the at-

tributes prefixed by Noncespaces after parsing to ensure that the browser

will interpret them appropriately.

1 # Restrict untrusted content to safe subset of XHTML

2

3 # Declare namespace prefixes, which are also the names

4 # of trust classes.

5 namespace trusted

6 namespace untrusted

7

8 # Policy for trusted content

9 allow //trusted:* # Allow all elements

10 allow //trusted:@* # Allow all attributes

11

12 # Policy for untrusted content

13 # Allow safe elements

14 allow //untrusted:b

15 allow //untrusted:i

16 allow //untrusted:u

17 allow //untrusted:s

18 allow //untrusted:pre

19 allow //untrusted:q

20 allow //untrusted:blockquote

21 allow //untrusted:a

22 allow //untrusted:img

23 # Allow HTTP protocol in the href attribute

24 allow //untrusted:a/@untrusted:href[starts-with(\

25 normalize-space(.), "http:")]

26 # Allow HTTP protocol in the img attribute

27 allow //untrusted:img/@untrusted:src[starts-with(\

28 normalize-space(.), "http:")]

29

30 # Fail-safe defaults

31 deny //* # Deny all elements

32 deny //@* # Deny all attributes

33

Figure 4. Noncespaces policy restricting un­
trusted content to BBCode [3]

nodes based on trust class (i.e. namespace prefix), name,

attributes, position the document, or any other criteria ex-

pressible in the XPath language. Using XPath enables us

to allow and deny elements and attributes separately and to

place constraints on attribute values. For instance, to al-

low all trusted elements, we can specify the rule “allow

//trusted:*”. //trusted:* selects all elements (*) in

the trusted namespace which descend from the root node

(//). Likewise, we can permit all trusted attributes with

the rule “allow //@trusted:*”. To allow an untrusted b

tag to appear (without attributes) anywhere in the document,

we can specify the rule “allow //untrusted:b”. Figure 4

shows a policy that allows any XHTML tag and attribute in

trusted content but allows only a safe subset of the markup

elements in untrusted content.

When checking a document’s conformance to a pol-

icy, the client considers each rule in order and matches

the XPath expression against the nodes in the document’s

Document Object Model. When an allow rule matches a

node, the client permits the node and will not consider the

Input : A document d and a policy p.

Output: TRUE if the document d satisfies the policy

p; FALSE otherwise.

begin

for Element or attribute node n ∈ d do
n.checked = FALSE

end

for Rule r ∈ p.rules do
for Node n ∈ d.matchNodes(r.XPathPattern)
do

if n.checked == FALSE then

if r.action == ALLOW then
n.checked = TRUE

else
return FALSE

end

end

end

end

for Element or attribute node n ∈ d do

if n.checked == FALSE then
return FALSE;

end

end

return TRUE;
end

Algorithm 1: An algorithm for checking whether
a document satisfies a policy

node when evaluating subsequent rules. When a deny rule

matches a node, the client determines that the document

violates the policy and will not render the document. To

provide a fail-safe default, if any nodes remain unmatched

after evaluating all rules, we consider those nodes to be pol-

icy violations (i.e. all policies end with an implicit “deny

//*|//@*”). If one wishes to specify a blacklist policy, he

can specify “allow //*|//@*”, which allows all remain-

ing nodes, as the last rule in the policy. Algorithm 1 shows

the algorithm for checking a policy.

We prefer this policy mechanism to more complex ones

like dynamic information flow tracking or event-based poli-

cies for its simplicity and ease of implementation across

browsers. It also fits naturally with a fairly common sce-

nario in web applications where content in the application’s

source can be considered trustworthy while content speci-

fied by users should be allowed a minimal set of capabili-

ties.

3.3. Server Annotation

Using Noncespaces, the server annotates nodes in an

XHTML document with trust classes. The server could use

a variety of techniques to determine the trust classes, rang-

ing from whitelisting known-good code to annotating out-

put based on program analysis or information flow tracking.

Using randomized namespace prefixes as trust class anno-

tations, the server ensures that untrusted content can never

change its trust classification.

In addition to annotating nodes with trust classes,

the server also needs to convey the policy to the

client. Noncespaces adds three HTTP protocol head-

ers to each HTTP response: X-Noncespaces-Version,

X-Noncespaces-Policy, and X-Noncespaces-Context.

Their semantics are as follows:

• X-Noncespaces-Version communicates the version

of the Noncespaces policy and semantics that should

be used, in case future changes are required.

• X-Noncespaces-Policy denotes the URL of the pol-

icy for the current document. If the client does not

have the policy in its cache, a compliant client must

first retrieve the policy before rendering the document.

• X-Noncespaces-Context maps the namespace pre-

fixes in the policy to the namespace prefixes in the

XHTML document contained in the response. To pre-

vent an attacker from guessing the namespace prefixes

in an XHTML document, the server must use differ-

ent randomized prefixes each time it serves the docu-

ment. On the other hand, it is convenient for the server

to provide the same policy file to all the requests for

the XHTML document (allowing the client to cache

the policy). X-Noncespaces-Context maps the static

namespace prefixes used in the policy file to the ran-

domized namespace prefixes in the XHTML document

contained in the response.

Because Noncespaces takes advantages of XML names-

paces, the server should serve Noncespaces documents with

the application/xhtml+xml content type.

3.4. Client Enforcement

When receiving a response containing Noncespaces

headers from a server, the web browser must ensure that

the document conforms to the policy before rendering it.

This requires the browser to retrieve the policy from the

web server if it doesn’t already have an unexpired copy in

its cache. The overhead involved in policy retrieval should

be minimal given that most web pages are assembled from

the results of multiple requests and that we expect it to be

common for a single, seldom-changing policy to be used for

each web application.

Client-side enforcement of the policy is appropriate be-

cause it avoids possible semantic differences between the

policy checker and the browser, which might lead the

browser to interpret a document in a way that violates the

policy even though the policy checker has verified the doc-

ument.

3.4.1. Backwards Compatibility. We maintain back-

wards compatibility with XHTML 1.0 compliant browsers

by using X- headers. If a web browser is not Noncespaces

capable, it will ignore the headers and process the docu-

ment as XHTML 1.0. In this case, even though the web

browser will render untrusted content that the policy would

deny, malicious content still cannot escape its containing

node (e.g. node-splitting attacks still cannot succeed).

We require browsers to be XHTML 1.0 compliant for

several reasons. First, XML (and therefore XHTML) af-

fords less opportunity for parsing ambiguity helping to en-

sure that the client will correctly interpret the server’s out-

put. The stricter XML parsing allows non-Noncespaces-

aware browsers to reject node-splitting attacks. Secondly,

because HTML parsers do not support XML namespaces,

they cannot take advantage of this convenient encoding

mechanism.

It is reasonable to require XHTML 1.0 compliance. Most

modern browsers (with the notable exception of Microsoft

Internet Explorer) are XHTML compliant. The restrictions

imposed by XHTML are not onerous; they merely require

documents to follow a simple, well-defined format.

Noncespaces has one subtle incompatibility with

XHTML that is easy to work around. While some browsers

(such as Opera [15]) understand XHTML attributes that

have been qualified with a prefix bound to the XHTML

namespace, XHTML Modularization 1.1 [2] specifies that

most XHTML attributes should not be qualified. For

browsers that do not support qualified attributes, we can use

a client-side JavaScript stub to unqualify attributes random-

ized by Noncespaces after document parsing.

4. Implementation

4.1. Server Implementation

Noncespaces requires the server to identify untrusted

content in web pages. The server may choose any ap-

proach. For instance, the server may whitelist trusted con-

tent statically, or determine untrusted content dynamically

by program analysis or information flow tracking. In our

prototype implementation, we choose an approach that ap-

plies to a popular web application development paradigm.

The popular Model-View-Controller [6] design pattern ad-

vocates separating presentation from business logic. Many

modern web applications employ a template system that in-

serts dynamic values, which business logic computes, into

static templates, which decide the presentation of the web

page. Since web developers author templates, the tem-

plates are trusted content. By contrast, dynamic values may,

and often do, come from untrusted sources, so we consider

these values to be untrusted content. This approach requires

that JavaScript be placed in templates to be annotated as

trusted content. (This requirement is reasonable because

most scripts can be specified statically.)

4.1.1. NSmarty. To automatically annotate the content of

web pages generated by template systems, we modified

Smarty [18], a popular template engine for the PHP lan-

guage. The Smarty language is a Turing-complete template

language that allows dynamic inclusion of other templates.

A Smarty template consists of free-form text interspersed

with template tags delimited by { and }. A template tag ei-

ther prints a variable or invokes a function. To use Smarty, a

PHP program invokes the Smarty template engine, passes a

template (or templates) to the engine, and assigns values to

the template variables in the template. The template engine

will then generate a document based on the template and the

dynamic values supplied for template variables.

To randomize XML namespace prefixes in Smarty tem-

plates, we must be able to recognize them. Since the Smarty

language allows Smarty tags to appear anywhere in a tem-

plate, in element names and attribute names, we must re-

strict the Smarty language to be able to recognize all the

XML namespace prefixes statically. Hence, we specified

a subset of the Smarty language, which we call NSmarty.

NSmarty prohibits template tags from appearing in element

names or attribute names. Through these modest restric-

tions, we ensure that we can correctly identify all the stati-

cally specified XML tags and attributes.

The Smarty template engine operates in two phases. The

first time it encounters a template, it compiles the template

into PHP code and caches it. Then the PHP code runs to

render the output document. On subsequent requests, the

cached PHP code will run to render the output document,

without the need to recompile the template. We provide a

preprocessor to the Smarty engine, which invokes the pre-

processor on the template each time before it compiles the

template. Our preprocessor inserts into the template PHP

code that replaces static XML namespace prefixes with ran-

dom prefixes. The process is depicted in Figure 5.

To preserve the semantics of the generated document, we

must map each static prefix to a random prefix bound to the

same namespace URI as the static prefix (note that differ-

ent prefixes may be bound to the same URI, or the same

prefix may be bound to different URI at different points in

the document). However, since the Smarty (and also our

NSmarty) language is Turing-complete, it is infeasible to

determine the scope of each static prefix reliably, which im-

plies that it is also infeasible to determine the URI that each

static prefix represents. Therefore, instead we map each

unique static prefix to a unique random prefix. This way, if

the original document without prefix randomization is well-

Figure 5. Implementing Noncespaces in the

Smarty template engine.

formed, the new document with prefix randomization will

also be well-formed and will be semantically equivalent to

the original document as long as no dynamic content (as a

result of template variable substitution) contains XML tags.

Figures 1 and 3 show an original XML template and the

rendered document after prefix randomization, respectively.

Algorithm 2 shows the pseudocode for prefix randomiza-

tion.

Input : An XML document d

Output: The document d after prefix randomization

begin1

for Tag t ∈ d do2

for Attribute a ∈ t do3

if a is a namespace declaration then4

map[a.prefix] = random()5

a.prefix = map[a.prefix]6

else if a.value is static (i.e. containing no7

template tag) then

a.prefix = map[a.prefix]8

end9

t.prefix = map[t.prefix]10

end11

end12

Algorithm 2: An algorithm for randomizing XML

namespace prefixes

When dynamic content contains XML tags, Algorithm 2

may create non-well-formed XML documents. This is be-

cause while the algorithm randomizes all the static names-

pace prefixes, it cannot randomize any namespace prefixes

in the dynamic content. If an open tag is in the static content

but its corresponding closing tag is in the dynamic content,

Algorithm 2 will randomize the prefix of the open tag but

not the prefix of the closing tag, resulting in a non-well-

formed XML document. Even though this situation is rare

and is considered a bad practice, we catch this error by veri-

fying that each document after prefix randomization is well-

formed.

4.1.2. Backward Compatibility. It is easy to retrofit ex-

isting web applications with Noncespaces. The developer

writes an appropriate policy and, when necessary, revises

the Smarty templates such that they are also valid NSmarty

templates.

If the developer wishes to enforce a static-dynamic pol-

icy, where all static content in the Smarty template is trusted

and all dynamic content is untrusted, no further modifica-

tion is necessary. Noncespaces will randomize all the static

namespace prefixes. Because no namespace prefixes in the

dynamic content will be randomized, they cannot gain any

capabilities for trusted content as specified by the policy.

4.2. Client Implementation

The client checks the document against its policy be-

fore rendering to ensure safety. To provide a rapid proof

of concept and to avoid modifying multiple browsers be-

fore deploying Noncespaces, we implemented our policy

checker as a client-side proxy that mediates communication

between the browser and the server. Our proxy forwards re-

quests from a web browser to the appropriate server. When

it receives a response from the server, if the response con-

tains Noncespaces headers, the proxy attempts to check the

document against the policy. If the document conforms to

the policy, the proxy forwards it to the client. If the docu-

ment violates the policy or fails to parse, or some other error

occurs, such as the policy being malformed or inaccessible,

the proxy returns an error document indicating the problem

to the web browser.

Performing policy checking in a proxy has several dis-

advantages. The proxy and the browser may parse the same

document differently in rare occasions, which may provide

opportunities for attack. The proxy also increases the re-

sponse times experienced at the browser. Although we be-

lieve that in-browser implementations are preferable, we

chose to implement a proxy in order to be able to deploy

Noncespaces sooner. The use of XHTML, and its stricter

parsing requirements, means that the proxy is less suscep-

tible to parsing ambiguities than it would be were it pars-

ing HTML. The policy-checking proxy can also be used by

servers in a self-defensive fashion to protect clients that are

not Noncespaces aware.

5. Evaluation

To evaluate the effectiveness and overhead of Nonces-

paces we conducted several experiments. We evaluated the

security of Noncespaces to ensure that it is able to prevent

XSS attacks through various attack vectors. Our perfor-

mance evaluation measures the costs of Noncespaces from

both the client and server’s points of view.

5.1. Security

We tested Noncespaces against six XSS exploits target-

ing two vulnerable applications. They were representative

exploits for all the major XSS vectors discussed in Sec-

tion 2. The applications used in this evaluation were a ver-

sion of TikiWiki [20] with a number of XSS vulnerabilities

and a custom web application that we developed to cover all

the major XSS vectors.

We began by developing policies for each application.

Because TikiWiki was developed before Noncespaces ex-

isted, it illustrates the applicability of Noncespaces to ex-

isting applications. We implemented a straightforward 37-

rule, static-dynamic policy that allows unconstrained static

content but restricts the capabilities of dynamic content to

that of BBCode (similar to Figure 4). We also had to add

exceptions for trusted content that TikiWiki generates dy-

namically by design, such as names and values of form el-

ements, certain JavaScript links implementing collapsible

menus, and custom style sheets based on user preferences.

For our custom web application, we implemented a

policy that does not take advantage of the static-dynamic

model. Instead, the policy takes advantage of Nonces-

paces’s ability to thwart node splitting attacks to imple-

ment an ancestry-based sandbox policy similar to the noex-

ecute policy described in BEEP [8]. This policy denies

script-invoking tags and attributes (e.g., <script> and

onclick) that are descendants of a <div> tag with the

class="sandbox" attribute. This policy consisted of 26

rules. Figure 6 shows an excerpt of the policy.

For each of the exploits we first verified that each ex-

ploit succeeded without Noncespaces randomization on the

server or our client-side proxy. We then enabled Nonces-

paces randomization and the client-side proxy. We observed

that the proxy blocked all the attacks.

5.2. Performance

Our performance evaluation first seeks to measure the

overhead of Noncespaces’s on the server, in terms of the

server’s response latency, the number of requests served per

second, and the time to validate that a document conforms

to a policy. Our test infrastructure consisted of the TikiWiki

application that we used for our security evaluation running

1 # Deny the <script> tag

2 deny //*[local-name() = ’div’]/@*[local-name() = ’class’ and . = ’sandbox’]/..//*[local-name() = ’script’]

3 # Deny the onload attribute

4 deny //*[local-name() = ’div’]/@*[local-name() = ’class’ and . = ’sandbox’]/..//@*[local-name() = ’onload’]

5 # Deny the href attribute

6 deny //*[local-name() = ’div’]/@*[local-name() = ’class’ and . = ’sandbox’]/..//@*[local-name() = ’href’ \

7 and starts-with(normalize-space(.), "javascript:")]

8 # Allow everything else

9 allow //*

10 allow //@*

Figure 6. Excerpt from an ancestry­based sandbox policy that denies all potential script­invoking
tags and attributes that are descendants of a <div> node with the class="sandbox" attribute.

in a VMware virtual machine with 160MB RAM running

Fedora Core 3, Apache 2.0.52, and mod php 5.2.6. The vir-

tual machine ran on an Intel Pentium 4 3.2GHz machine

with 1GB RAM running Ubuntu 7.10. For our client ma-

chine, we used a laptop with an Intel Core 2 Duo 2.2GHz

and 2GB RAM running OS X 10.4. We have spent no ef-

fort optimizing our Noncespaces prototype. In each test we

used the ab (ApacheBench) [1] tool to retrieve a TikiWiki

page 1000 times. We varied the number of concurrent re-

quests between 1, 10, and 30, and the configuration of the

client and server between the following:

• No Noncespaces randomization on the server, and no

proxy between the client and the server. This configu-

ration measures the baseline performance of the server

without Noncespaces.

• Noncespaces randomization on the server, but no

proxy between the client and the server. This config-

uration measures the impact of the Noncespaces ran-

domization on server performance.

• Noncespaces randomization on the server, and a

client-side Noncespace-aware proxy between the

server and the client. This configuration measures the

end-to-end performance impact of Noncespaces.

We report the median results of three trials for each

test. The server and virtual machine were rebooted between

tests. The target page was prefetched once before the test to

warm up the systems’ caches to prevent any one-time costs

(such as compiling the NSmarty templates) from skewing

our results.

Figure 7 shows the Cumulative Distribution Function of

the time for a response to complete for our different test

configurations and concurrencies. We see that for over 90%

of responses, the overhead of enabling Noncespaces ran-

domization on the server is less than 2%. Thus system ad-

ministrators need not worry about significant latency due to

Noncespaces randomization.

When the client is configured to check that the deliv-

ered document conforms to its policy on a proxy, the slow-

down in response time is closer to 3.5x in the worst case.

Even though we did not perceive any slowdown when we

browsed pages on the web server interactively, we wished

to determine if the slowdown was mainly caused by the pol-

icy checking code or by the architectural overhead of using

a proxy. Therefore, we performed a microbenchmark. The

average time to check a document retrieved in the perfor-

mance tests against its policy was 1.23 seconds, which is

usually much lower than the end-to-end time for fulfilling a

request and is therefore likely to be tolerable for most users.

The impact of Noncespaces on server throughput can be

seen in Figure 8. The leftmost bar in each group shows

the baseline performance of the server without Noncespaces

randomization or the client side proxy. The center bar in

each group shows the performance with Noncespaces ran-

domization enabled but no client side proxy. And, the right-

most bar, the performance with the Noncespaces random-

ization enabled and client-side proxy checking. In each

case, the penalty for enabling Noncespaces randomization

on the server is small, 1.3% for serialized requests, no dif-

ference for 10 concurrent requests, and a 10.3% difference

with 30 concurrent requests. As seen in these response

times, when the client is limited to issuing requests serially,

the overhead of the validating proxy dominates. However,

because documents can be checked independently, the re-

duction in throughput for concurrent requests is much less.

The performance improvement for 30 concurrent requests

with randomization and the client-side proxy enabled is un-

expected. The virtual machine was swapping heavily while

serving so many concurrent requests. We conjecture that

swapping dominated the CPU usage in this case and caused

the spurious performance improvement when we enable the

client-side proxy.

As these tests show, the impact of Noncespaces on server

performance is negligible. The client-side performance im-

pact is more pronounced, though acceptable for interactive

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16

F
ra

ct
io

n
o
f

re
sp

o
n
se

s

Response time (s)

Without Noncespaces

Server randomization w/o proxy

Server randomization w/ proxy

0.5

0.6

0.7

0.8

0.9

1

10 15 20 25 30 35

Response time (s)

Without Noncespaces

Server randomization w/o proxy

Server randomization w/ proxy

Figure 7. Cumulative Distribution Function of response times for serial requests (left) and 10 concur­

rent requests (right)

Baseline

Server randomization w/o proxy

Server randomization w/ proxy

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1

1
0

3
0

A
v
g
. R

eq
u
es

ts
/s

ec

of concurrent requests

Figure 8. Average requests served per sec­
ond in each configuration vs. concurrency

use.

6. Security Analysis

6.1. Threat Model

The goal of Noncespaces is to defend against XSS at-

tacks. We assume that the attacker can only submit ma-

licious data to XSS-vulnerable web applications. We as-

sume that the attacker cannot otherwise compromise the

web server or client via buffer overflow attacks, malware,

etc.

6.2. Identifying Untrusted Content

The core idea of Noncespaces is to use randomized

namespace prefixes to annotate trusted data and to prevent

malicious data from escaping its containing node. As long

as the attacker cannot guess the randomized prefixes for

trusted content, the attacker cannot change the classification

of his untrusted content. Since the server randomizes the

prefixes differently each time it serves a page, the attacker

would not gain an advantage by viewing previous render-

ings of the page that he wishes to attack.

In our prototype, we use an approach that identifies

trusted content in template systems. Since our language,

NSmarty, requires constant strings for tag and attribute

names, we can identify all the trusted elements and at-

tributes reliably.

Our prototype conservatively classifies all the content

that might have user-contributed data as untrusted. This is

safe, but it might restrict rich content in documents. For

example, consider the following content in a template: foo. Since the value

of the attribute onclick consists of both static JavaScript

code and a template variable id, Algorithm 2 conserva-

tively, and often rightly, considers this attribute untrusted.

If the policy denies onclick in untrusted content, the client

will reject this document, even when this JavaScript code is

harmless. We propose two solutions. First, the client could

ignore the content that the policy denies but render the rest

of the document, rather than rejecting the entire document.

This solution may be acceptable in many situations. The ad-

vantage of this solution is that it requires no change to how

we identify untrusted content. Second, the web application

could whitelist certain untrusted content, after either proper

sanitization or ensuring that it contains no malicious input

by program analysis or information flow tracking. This so-

lution requires slight modification to Algorithm 2: when

Algorithm 2 determines if the value of an attribute is static

(Line 7), it should also consult the whitelist.

6.3. Enforcing Security Policy

The client enforces the security policy on the documents.

Its security depends on the correctness of the policy and the

correctness of enforcement. Noncespaces does not dictate

any specific security policy. Either the server or the client

may design proper policies that sufficiently restrict the ca-

pabilities of untrusted content.

A Noncespaces-aware client may reject an XHTML doc-

ument for either of two reasons: (1) the document is not

well-formed; or (2) the document violates the policy. Both

of these cases may indicate an attack. In the first case, the

attacker may have tried to inject a close tag to escape from

its enclosing node. However, since he cannot guess the ran-

dom prefix of the tag of the node, his injected close tag

causes an XML parsing error. In the second case, the at-

tacker may have injected content that requires higher capa-

bilities than what the policy allows. Interestingly, even if a

client is not Noncespaces-aware, it can still reject a mali-

cious document in the first case above, as long as the client

is XHTML 1.0 compatible. The first case is also known as

a “node-splitting attack”. Therefore, a Noncespace-aware

server can prevent node-splitting attacks even if the client is

not Noncespace-aware.

The client must parse XHTML properly. Since HTML

parsers are lenient, attackers have exploited the discrep-

ancies between different parsers. By contrast, XHTML is

much stricter, which results in significantly fewer, if any,

discrepancies between different parsers.

7. Related Work

Our work was inspired by Instruction Set Randomiza-

tion (ISR) [9] – a technique for defending against code in-

jection attacks in executables. ISR randomly modifies the

instruction set architecture of a system for each running pro-

cess. As long as an attacker cannot guess the randomiza-

tion employed, the attacker will not be able to inject code

with meaningful semantics. Noncespaces is an analogous

approach for web applications. After the server randomizes

the namespace prefixes in each document, it will be simple

for the client to differentiate injected content from trusted

content. Noncespaces further expands the ISR idea by us-

ing a policy to constrain the capabilities of untrusted con-

tent while allowing rich trusted content. The Noncespaces

policy language allows the application developer to decide

what types of untrusted content to permit in each applica-

tion setting.

Two main goals of XSS attacks are stealing the victim

user’s confidential information and invoking malicious op-

erations on the user’s behalf. Noxes provides a client-side

web proxy to block URL requests by malicious content us-

ing manual and automatic rules [10]. Vogt et al. track the

flow of sensitive information in the browser to prevent ma-

licious content from leaking such information [22]. Both of

these projects defeat only the first goal of XSS attacks. By

contrast, Noncespaces can defeat both goals of XSS attacks

because it prevents malicious content from being rendered.

Client-side policy enforcement mechanisms enforce a

security policy in the browser to avoid the semantic gap be-

tween the way a web application intends content to be inter-

preted and how the client actually interprets it. For example,

BEEP [8] allows a server-specified JavaScript security han-

dler to decide whether to permit or deny the execution of

each script based on a programmable policy. The BEEP au-

thors present two example policies: an ancestry-based sand-

box policy, which prohibits scripts that are descendants of

a sandbox node from running, and a whitelist policy, which

allows a script to execute only if it is known-good. Muta-

tion Event Transforms [21] extend the mechanism of BEEP

to all DOM modification operations. Based on the policy

delivered by the server, Mutation Event Transforms can al-

low, deny, or arbitrarily modify every DOM modification

operation.

Similar to both of these approaches, in Noncespaces the

server delivers a policy that the client enforces. Like BEEP,

our policy language is able to express both ancestry-based

sandbox and whitelist policies. Additionally, like Mutation

Event Transforms, our policy language is also able to ex-

press policies which constrain non-script content of a web

page. This is important because malicious non-script con-

tent may cause security vulnerabilities. For instance, an at-

tacker could steal login credentials by injecting a fake lo-

gin form onto a bank’s website even if the attacker can-

not inject scripts. For our client-side policy component, it

would have been possible to use an approach like Mutation

Event Transforms. We settled on our client-side approach

for its simplicity. The main contributions of our work is

the mechanism for reliably communicating trust informa-

tion from server to client and leveraging properties of the

web application to determine trustworthiness of content au-

tomatically. Neither BEEP nor Mutation Event Transforms

addresses these problems.

Markham has proposed Content Restrictions [13] and

Script Keys [12] as mechanisms for defending against XSS

attacks. Content Restrictions allow the server to specify

certain restrictions on the content that it delivers, such as:

whether scripts may appear in the document body, header,

only externally, or not at all; which hosts resources may be

fetched from; which hosts scripts may be fetched from; etc.

Script Keys prohibits scripts from running unless they in-

clude a server-specified key in their source. Noncespaces

client-side policies are able to specify most of the same

restrictions as Content Restrictions. Content Restrictions

provides no mechanism for differentiating between server-

trusted content executing a script in an approved location

or injected content doing the same. Both Script Keys and

Noncespaces provide a way to differentiate between the two

scenarios. In the limit, when the script key is changed on ev-

ery page load, Script Keys behaves like Noncespaces — the

attacker must guess the randomly generated key for each

request to get their script to run. However, unlike Nonces-

paces, neither of these two proposals provide a means to

restrict non-script content.

Wasserman and Su [23] use static analysis to track user

input through a web application and model the way it is

transformed by the application. They then attempt to de-

termine if any program output derived from user input will

invoke the browser’s JavaScript interpreter. Noncespaces

focuses on maliciously injected content of any kind, not just

JavaScript. Also, by operating on the actual program out-

put we avoid the difficulties of static analysis such as loss

of precision due to round-trips to the browser, difficult to

support PHP features, etc.

Advanced template systems such as Genshi [7] and static

analysis techniques such as that used in [11] have consid-

ered the problem of ensuring that output documents are

well-formed and valid. Genshi attempts to ensure all output

documents are well-formed by requiring all templates to be

valid XML document fragments. Genshi employs context-

sensitive output sanitization to ensure that web developers

do not accidentally include unsanitized output into their

output documents. However, Genshi is unable to prevent

incomplete sanitization by the web application, especially

when there is discrepancy between how the server and client

interpret data. Even when the document is syntactically

valid, it may contain improperly sanitized content. When

improperly sanitized content arrives at the client, the client

cannot distinguish untrusted content from trusted content.

In Noncespaces, we focus on ensuring that untrusted con-

tent delivered to the browser will not be able to do any harm.

We also chose not to require NSmarty templates to be XML

document fragments in order to support a large number of

existing applications whose templates do not meet this re-

quirement. Instead we ensure the static validity of the tem-

plates as we render them.

8. Conclusion

We have presented Noncespaces, a technique for pre-

venting XSS attacks. The core insight of Noncespaces is

that if the server can reliably identify and annotate untrusted

content, the client can enforce flexible policies that prevent

XSS attacks while allowing rich safe content. The core

technique of Noncespaces uses randomized XML names-

pace prefixes to identify and annotate untrusted content,

similar to the use of Instruction Set Randomization to defeat

injected binary code attacks. Noncespaces is simple. The

server need not sanitize any untrusted content, which avoids

all the difficulties and problems with sanitization. Once the

server annotates a node as untrusted, no malicious content

in the node may escape the node or raise its trust classifi-

cation. A Noncespaces-aware client can reliably prevent all

the attacks that the policy denies. Even if a client is not

Noncespaces-aware, it can still prevent the node-splitting

attack, a form of XSS that is otherwise difficult to defeat.

We implemented a prototype of Noncespaces on a template

system on a web server and on a proxy at the client side. Ex-

periments show that the overhead of Noncespaces is mod-

erate.

Acknowledgements

This research is partially supported by NSF CAREER

award 0644450 and by an AFOSR MURI award. We would

like to thank Francis Hsu for his assistance with the fig-

ures in this paper and valuable help proofreading, Zhendong

Su and his research group for critical input during the early

stages of this work, and the anonymous reviewers for their

helpful comments.

References

[1] ab - Apache HTTP server benchmarking tool. http://

httpd.apache.org/docs/2.2/programs/ab.html.

[2] D. Austin, S. Peruvemba, S. McCarron, M. Ishikawa,

and M. Birbeck. XHTML Modularization 1.1. Techni-

cal report, W3C, Oct. 2008. http://www.w3.org/TR/

xhtml-modularization/.

[3] BBCode. http://www.phpbb.com/community/faq.php?

mode=bbcode.

[4] T. Bray, D. Hollander, A. Layman, and R. Tobin. Names-

paces in XML 1.0 (Second Edition). Technical report, W3C,

Aug. 2006. http://www.w3.org/TR/REC-xml-names/.

[5] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler,

and F. Yergeau. Extensible Markup Language (XML) 1.0

(Fourth Edition). Technical report, W3C, Sept. 2006. http:

//www.w3.org/TR/REC-xml/.

[6] S. Burbeck. How to use Model-View-Controller (MVC),

1992. http://st-www.cs.uiuc.edu/users/smarch/

st-docs/mvc.html.

[7] Genshi: Python toolkit for generation of output for the web,

2008. http://genshi.edgewall.org/.

[8] T. Jim, N. Swamy, and M. Hicks. Defeating script injec-

tion attacks with browser-enforced embedded policies. In

WWW ’07: Proceedings of the 16th international confer-

ence on World Wide Web, pages 601–610, New York, NY,

USA, 2007. ACM.

[9] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering

code-injection attacks with instruction-set randomization. In

CCS ’03: Proceedings of the 10th ACM conference on Com-

puter and communications security, pages 272–280, New

York, NY, USA, 2003. ACM.

[10] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic. Noxes:

A Client-Side Solution for Mitigating Cross Site Scripting

Attacks. In Proceedings of the ACM Symposium on Applied

Computing (SAC), Dijon, France, April 2006.

[11] C. Kirkegaard and A. Møller. Static analysis for Java

Servlets and JSP. In Proc. 13th International Static Anal-

ysis Symposium, SAS ’06, volume 4134 of LNCS. Springer-

Verlag, August 2006. Full version available as BRICS RS-

06-10.

[12] G. Markham. Script Keys, Apr. 2005. http://www.gerv.

net/security/script-keys/.

[13] G. Markham. Content Restrictions, Mar. 2007. http://

www.gerv.net/security/content-restrictions/.

[14] MITRE Corporation. Vulnerability Type Distributions in

CVE, May 2007. http://cwe.mitre.org/documents/

vuln-trends/index.html.

[15] Opera Browser, Dec. 2008. http://www.opera.com/

browser/.

[16] RSnake. XSS (Cross Site Scripting) Cheat Sheet, June 2008.

http://ha.ckers.org/xss.html.

[17] O. Shezaf. The Universal XSS PDF Vulnerability, Jan.

2007. http://www.owasp.org/images/4/4b/OWASP_IL_

The_Universal_XSS_PDF_Vulnerability.pdf.

[18] Smarty Template Engine, June 2008. http://www.

smarty.net/.

[19] Technical explanation of the MySpace worm, Feb.

2006. http://web.archive.org/web/20060208182348/

namb.la/popular/tech.html.

[20] TikiWiki CMS/Groupware. http://info.tikiwiki.org/

tiki-index.php.

[21] Úlfar Erlingsson, B. Livshits, and Y. Xie. End-to-end web

application security. In HOTOS’07: Proceedings of the

11th USENIX workshop on Hot topics in operating systems,

pages 1–6, Berkeley, CA, USA, 2007. USENIX Association.

[22] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel,

and G. Vigna. Cross-Site Scripting Prevention with Dy-

namic Data Tainting and Static Analysis. In Proceedings

of the Network and Distributed System Security Symposium

(NDSS), San Diego, CA, February 2007.

[23] G. Wassermann and Z. Su. Static Detection of Cross-Site

Scripting Vulnerabilities. In Proceedings of ICSE 2008,

Leipzig, Germany, May 2008.

