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ABSTRACT
Many protocols have been proposed to provide reliability
and consistency guarantees for group-oriented communica-
tion in distributed systems. However, existing systems tol-
erate only benign failures or a limited number of Byzantine
failures. This limitation is problematic for systems consist-
ing of mutually suspicious Internet peers not controlled by
a centralized authority.

We propose OldBlue, a broadcast protocol for distributed
systems that: ensures causal delivery ordering over all mes-
sages, guarantees that any two correct processes will have
consistent views of the full causal history of any message de-
livered to both processes, remains secure in the presence of
an arbitrary number of Byzantine failures, and allows con-
nected correct processes to make progress during periods of
network partition. To our knowledge, OldBlue is the first
protocol which provides these guarantees in such a strong
threat model. We provide proofs that OldBlue meets its for-
mal requirements and present simulation results indicating
an upper-bound on its expected performance in practice.

General Terms
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Keywords
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1. INTRODUCTION
With the rising popularity of the peer-to-peer (P2P) net-

working paradigm (e.g. Chord, Kademlia, Skype, BitTor-
rent), an increasing number of large distributed systems are
being constructed from computing and network resources
contributed by volunteers throughout the globe. P2P’s widely
distributed nature and lack of central control make it an at-
tractive architecture for building anonymity-preserving and
censorship-resistant networks such as Tor and Freenet. How-
ever, adversaries can volunteer resources to P2P systems in
order to attack from within. Because there is no a priori
bound on the level of adversarial influence, participants in
P2P networks find themselves in a setting of “mutual sus-
picion” — every other participant may be attempting to
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thwart the goals that the system seeks to achieve. This
has led to some efforts to design secure P2P network vari-
ants [22, 15, 14]. However, many systems could benefit if
fundamental distributed systems primitives could be made
secure in this setting.

One of the most fundamental primitives for group oriented
communication is Causal Broadcast. A Causal Broadcast
protocol is a broadcast network protocol which ensures that
messages are delivered in an order that preserves the poten-
tial causal relationships between messages. Thus, if message
m1 could have caused m2 (the author of m2 sent or delivered m1
before sending m2), a process will not deliver m2 unless that
process has already delivered m1. Typically, this property is
enforced by including in each message either a vector times-
tamp or the unique message identifiers of causally preceding
messages [16, 18]. This allows the recipient of a message m2
to precisely determine the set of messages M which causally
precede m2 and to ensure that m2 will only be delivered if all
messages in M have been delivered.

Many Causal Broadcast protocols exist. However, most
tolerate only benign failures. [13, 1, 16, 9, 4, 17] Solutions
based on tamper-proof hardware which tolerate Byzantine
failures have been presented. [20, 21] However, such hard-
ware is still not in wide deployment on common commod-
ity PCs. Causal Broadcast can be achieved by building
on protocols providing stronger guarantees, such as Reliable
Broadcast [10, 7, 19, 2, 9] and Byzantine Agreement [11, 12,
8]. However, this is undesirable. Though, Byzantine Agree-
ment is solvable for t = n− 1 Byzantine failures in general,
practical Byzantine Agreement and Reliable Broadcast pro-
tocols that guarantee liveness among correct processes, can
tolerate at most t ≤ bn−1

3
c Byzantine failures. [6] P2P net-

work churn and temporary network outages can cause large
numbers of processes to be temporarily unreachable. During
a temporary outage of t ≥ bn−1

3
c, Reliable Broadcast proto-

cols will be unable to send and deliver new messages and
Byzantine Agreement protocols must deliver failure mes-
sages while a Causal Broadcast protocol can allow processes
within each connected component to continue sending and
delivering messages to one another because each component
can ensure causal ordering locally. In addition to temporary
network outages, the t ≤ bn−1

3
c limit is inconsistent with

the mutually suspicious setting of P2P networks where an
attacker can control an arbitrary fraction of system nodes
limited only by the attacker’s resource constraints. More
general Byzantine Agreement protocols fare no better. Lay-
ing efficiency considerations aside, if we allow up to n − 1



Byzantine failures, a Byzantine Agreement protocol must
deliver a failure message if even a single process goes of-
fline. This indicates the need for a protocol that directly en-
sures Causal Broadcast, is tolerant of an arbitrary number
of Byzantine failures, and ensures liveness among connected
processes during a network partition.

OldBlue ensures causal ordering by identifying each mes-
sage by a message digest over the sender, the identifiers of
each of the message’s causal predecessors, and the message
payload. Because each message embeds the identifiers of all
immediate causal predecessors, recipients of a message m can
ensure that they have delivered all messages causally preced-
ing m before delivering m. Origin authenticity is guaranteed
through the use of digital signatures and, because message
identifiers form a Merkle hash tree over all preceding mes-
sages, the recipient of m is guaranteed that, once they deliver
m, their view of m and all of m’s causal predecessors is consis-
tent with the sender’s view. Processes in OldBlue cooperate
in order to opportunistically retransmit lost messages.

Like Reiter and Gong’s Piggybacking protocol [18], Old-
Blue piggybacks message digests to ensure that recipients
can precisely determine causal predecessors of each message.
Like Psync, OldBlue uses the directed acyclic graph struc-
ture of the causal precedence relation to reduce the amount
of information that must be sent in each message. Unlike
either protocol, OldBlue also enforces a formal fairness prop-
erty and goes to great lengths to prevent starvation between
correct connected processes despite allowing an arbitrary
number of Byzantine processes. In contrast to protocols
which give stronger delivery and ordering guarantees, such
as Byzantine Agreement, OldBlue’s direct support of causal
precedence and fairness allows connected correct processes
to make progress during times of network partition.

2. THREAT MODEL
We first consider the setting in which OldBlue operates.

A protocol session takes place between n distinct processes.
For simplicity, we assume the processes are connected by an
unreliable asynchronous broadcast medium, which may be
simulated via point-to-point messages or multicast.

The degree to which the network is unreliable is a func-
tion of a Byzantine adversary that has complete control over
the network. The adversary may modify, insert, delete, du-
plicate, and reorder messages as she pleases. This ensures
that OldBlue’s security properties are not dependent on the
properties of the underlying network. In any network struc-
tured as a spanning tree, for any two processes, there will
be a single device (i.e. server, router) mediating all traffic
between them. On Ethernet local area networks, an adver-
sary may be able to use ARP spoofing to position himself
to mediate all traffic on the local broadcast domain.

The adversary may also corrupt an arbitrary number (t) of
processes, learning their internal state including both their
long-lived and session secrets. The adversary can cause cor-
rupt processes to deviate from the protocol arbitrarily. In
contrast to corrupt processes, correct processes neither di-
vulge their internal state nor deviate from the protocol. Pro-
cesses with incorrect implementations or hardware failure
are considered corrupt and their behavior to be the man-
ner in which the adversary has caused them to deviate from
the protocol. Also note that, because the adversary has full
control of the network, she may prevent a correct process
p from receiving any message(s) sent by other session pro-

cesses, effectively disconnecting them from the network.
In the mutually suspicious setting of many P2P networks,

an adversary may join as many nodes to the system as her
resources allow. While place no limits on the number of cor-
rupt processes (t), some of OldBlue’s properties are trivially
true unless there are at least two correct processes. There-
fore, in the rest of the paper we will assume t ≤ n− 2.

3. PROTOCOL PROPERTIES
OldBlue provides the following interface to other system

layers:

CB.open(processes, pid, gk) begin a causal broadcast ses-
sion among processes (initialize state, etc.). pid is the
identifier of the local process. gk is the session group
encryption key.

id CB.broadcast(msg) invoked by the application layer to
instruct to broadcast message msg to all processes. Re-
turns a unique id which distinguishes the current in-
vocation at the local process from all other invoca-
tions by all other processes. This permits associating
each invocation of CB.deliver() below with a specific
invocation of CB.broadcast(). Because an applica-
tion may send messages in response to inputs provided
by the adversary, the adversary is free to invoke the
CB.broadcast(m) method of correct processes for ar-
bitrary m.

CB.deliver(sender, id, msg) callback to application layer
signaling delivery of message msg with id id authored
by sender. Messages are delivered in causal order.

CB.close() shutdown of a session opened by CB.open().

We define the formal properties of OldBlue in terms of
the operation of CB.broadcast() and CB.deliver(). As a
Causal Broadcast protocol, we must first review the notion
of causal order before discussing other protocol properties.
Informally, if receipt of a message m could have caused the
sending of message m′, we say that m causally precedes m′. A
formal definition follows:

Definition 1. Causal Precedence. An event a causally pre-
cedes an event b (written a → b) if and only if one of the
following conditions hold:

1. a correct process p executes i = CB.broadcast(m)

(event a) and b is the corresponding message delivery
CB.deliver(p, i, m) (i.e. broadcast of a message pre-
cedes its delivery)

2. a correct process executes CB.broadcast(m) (event a)
before executing CB.broadcast(m’) (event b) (i.e. tem-
poral progression at a correct process)

3. a correct process executes CB.deliver(p, i, m) (event
a) then CB.broadcast(m’) (event b) (i.e. delivery of m
precedes broadcast of m′)

4. there exists some event e such that a → e and e → b
(i.e. transitive closure)

The causal precedence relation · → · defines a partial or-
dering over events. If a → b, then we can say that a hap-
pened before b. Any two events c and d not related by the



causal precedence relation are said to be concurrent (i.e. c
and d are concurrent if c 6→ d and d 6→ c). No statements
can be made about the execution order of concurrent events.

In the context of Causal Broadcast protocols, all events
of interest correspond to broadcast or delivery of messages.
Therefore, we will abuse notation and speak of a message m

causally preceding another message m′ (m→ m′) where event
a is the broadcast or delivery of m, event b is the broadcast
of m′ and a→ b according to Definition 1.

OldBlue captures potential causality between messages.
It may be the case that a message m was delivered before a
message m′ was broadcast, but that the broadcast of m′ was in
no way influenced by m. It is not possible to distinguish this
scenario without application-specific knowledge. Therefore,
if a message m could have influenced the sending of another
message m′, OldBlue conservatively determines that m→ m′.

We restrict the definition of causal precedence to the ac-
tions performed by correct processes. Incorporating the
internal actions of corrupt processes into the definition of
causal precedence is not meaningful because corrupt pro-
cesses can behave arbitrarily. We impose a distinction be-
tween actual causal precedence — as defined above by the
behavior of correct processes — and apparent causal prece-
dence. Causal precedence between messages must be rep-
resented in protocol messages. It is possible that corrupt
processes may author messages which appear to have an
arbitrary set of (possibly non-existent) causal predecessors.
Therefore, message m with id i authored by corrupt process
p enters the causal precedence relation only when a correct
process executes CB.deliver(p, i, m). We address this is-
sue further in Section 4.

The formal guarantees that OldBlue provides are captured
in the following definitions:

Definition 2. Validity. If a correct process p executes
i = CB.broadcast(m) for a message m, then p eventually
executes CB.deliver(p, i, m). If the adversary delivers
all messages associated with CB.broadcast(m) to a correct
process q, q will execute CB.deliver(p, i, m).

Definition 3. Causal Consistency. No correct process p
will execute CB.deliver(q, i, m), until it has delivered
all messages m′ which causally precede m. Specifically, if
q (the author of m) is a correct process, before executing
CB.deliver(q, i, m), p will have executed:

1. CB.deliver(x, i’, m’) for each such call that oc-
curred at q before q executed i = CB.broadcast(m)

2. CB.deliver(q, i’, m’) for each call
i’ = CB.broadcast(m’) made by q before q executed
i = CB.broadcast(m)

Definition 4. Authenticity. Every correct process executes
CB.deliver(p, i, m) at most once for each value of i (and
any values of p and m) and, if p is correct, then p previously
executed i = CB.broadcast(m).

Validity provides three guarantees. It rules out trivial
protocols that deliver no messages. It ensures self-delivery
of messages. And, it ensures liveness of connected correct
processes—if the adversary delivers all protocol messages as-
sociated with an invocation of CB.broadcast(m) to a correct
process, that process must deliver m. A message is associ-
ated with CB.broadcast(m) if it is the initial broadcast of m,

a request to retransmit a lost message causally preceding m

sent by a process trying to deliver m, or a message causally
preceding m retransmitted in response to such a retransmis-
sion request. If the adversary does not faithfully deliver all
such associated messages, to a correct process q, q is not
required to deliver m. (Indeed, in some cases to do so would
violate Causal Consistency.)

Causal Consistency ensures that all messages are delivered
in causal order. Causal Consistency further ensures that,
whenever any two correct processes execute
CB.deliver(q, i, m), these two processes agree on m and
all m′ → m — over both causal ordering and message contents
— without regard to the correctness of the authors of m or
its causal predecessors. This is particularly useful, because
it allows us to know something about the level of consistency
between the states of two processes even if communication
is one-way or no messages ever become stable.

If q, the author of m, is corrupt, the causal precedence of
m will not be defined until it m has been delivered by a cor-
rect process. However, m will have an apparent set of causal
predecessors. Any correct process p that delivers m does
not know whether m’s author is correct. Therefore, p must
deliver m subject to the ordering imposed by m’s apparent
causal predecessors to ensure that p’s operation is correct
irrespective of the correctness of q. A corrupt author q does
not weaken the consistency guarantees ensured by Defini-
tion 3. To see this, let p execute CB.deliver(q, i, m). Let
the next message that p sends be m′. m is now a causal prede-
cessor of m′. Therefore, Validity requires any correct process
r which receives the messages associated with
i’ = CB.broadcast(m’) to execute CB.deliver(p, i’, m’).
Because p is correct, Causal Consistency also requires r to
CB.deliver(q, i, m) and all apparent causal predecessors
delivered by p. Thus Causal Consistency guarantees that
correct processes p and r will agree on m′ and all causal pre-
decessors (including m) after the delivery of m′ regardless of
the correctness of q, the author of m.

In this way, Causal Consistency extends the liveness prop-
erty ensured by Validity. Validity ensures that processes will
be able to deliver a faithfully transmitted message from a
correct process. Causal Consistency ensures that all previ-
ously undelivered causally preceding messages will also be
delivered at that time.

Authenticity ensures that any attempt to impersonate a
correct process or replay messages will not succeed. Au-
thenticity also ensures that, for every delivered message, if
the purported author is correct, the message was transmit-
ted without modification from that author. Because corrupt
processes can deviate arbitrarily from the protocol, Authen-
ticity does not place any constraints on their internal behav-
ior.

Corrupt processes may attempt to monopolize the resources
of correct processes to prevent them from making progress.
To prevent this from occurring, each process explicitly or
implicitly requests the information they needed in order to
make progress. A request is either the retransmission of a
message explicitly requested by another process, the trans-
mission of a new message from the local process (all pro-
cesses that do not make an explicit request for a retransmis-
sion are considered to have implicitly requested new mes-
sages), or an outgoing request from the local process for
other processes to retransmit a message. Correct processes
then impose a fair scheduling criterion over their outgoing



messages in order to fulfill the requests of other processes in
turn.

We associate with every process p a FIFO request queue
Rp : Requests. We define a function
bool eligible(process, request) that captures external
constraints governing whether or not a process is able to
accept the fulfillment of request at the time of invocation.
E.g. A congestion control mechanism might dictate that pro-
cess p is congested, thus we should not attempt to send
a message requested by p right now because it is likely to
be dropped. We assume that, for each p and request r,
eligible(p, r) depends only on information controlled by
p and network conditions. Thus, if p is correct, the adversary
cannot cause p to be ineligible by means other than exercis-
ing her ability to drop and delay messages on the network.
Furthermore, we stipulate that eventually eligible(p, r)

will become true for all processes p and requests r.

Definition 5. Fairness. A scheduling algorithm outputs a
sequence of requests from processes (p1, r1), (p2, r2), . . . We
call a scheduling algorithm fair if each process with eligible
requests will have one of their requests scheduled at least
once in every n requests. That is to say, for each process p
where p has an eligible request at the time the ith request
(ri) is scheduled, there is a request rj with pj = p, rj ∈ Rp,
and i ≤ j < i+ n.

Fairness ensures that corrupt processes cannot cause a cor-
rect process to starve other correct processes. We restrict
fairness to the outgoing messages sent by each correct pro-
cess because processes cannot control which messages they
receive, nor can they determine the author of a message un-
til after signatures are verified. Correct processes should
process incoming messages in a first-come first-served order.
We assume that differences in computation time and mes-
sage transmission time due to message length can be upper
bounded by some suitably small constant allowing message-
based fairness to be approximately equivalent to definitions
that take computation or bandwidth into account.

4. THE OldBlue PROTOCOL
In this section we describe the OldBlue protocol. Old-

Blue is positioned above a network transport protocol layer
that supports unreliable asynchronous unordered end-to-end
message transmission via multicast (possibly simulated us-
ing multiple unicasts). send(recipients, msg) will multi-
cast msg to recipients. The callback recv(sender, msg) is
invoked when a message, allegedly from sender, is received
from the network.

We associate with each process p a public-private signing
key pair (pk(p), sk(p)). We assume that the correspondence
between public signing keys and process identities is known
to all processes. We denote signing (respectively verifying)
message m under key sk(p) (pk(p)) by σ = S(sk(p), m)

(V(pk(p), m, σ)). We denote encryption and decryption
of message m under key gk by E(gk, m) and D(gk, m) re-
spectively.

We assume the existence of unambiguous serialization and
deserialization functions encode() and decode() with
m = decode(encode(m)) which, respectively, are able to en-
code a data type for transmission over the network and
decode a corresponding language-level data type from the
network. We assume that H() is a collision-resistant crypto-

graphic hash function such that it is computationally infea-
sible to find two inputs m1 != m2 such that H(m1) == H(m2).

Each process maintains the following state for each ongo-
ing OldBlue session:

class CB:

Processes : Set of ProcId

Pid : ProcId

Requests : Queue of (ProcId, Set of Request)

Delivered : Map from MsgId to Message

Undelivered : Map from MsgId to Message

Frontier : Set of MsgId

Wire : Map from MsgId to String

gk : Encryption Key

Processes identifies the processes that are members of
the OldBlue session. Pid is the identity of the local process.
Requests is a priority queue of process id’s and the out-
standing requests associated with that process maintained
in least-recently-used order. Delivered and Undelivered

store delivered messages and received but not yet delivered
messages for this session respectively. For instance, if a mes-
sage is received before one of its causal predecessors, it will
remain in Undelivered. Frontier contains the message id’s
of leaves of the causal graph. If Frontier contains the id of
message m, the local process has not delivered any messages
causally newer than m. Wire stores the on-the-wire represen-
tation of network messages indexed by their message id to
allow collaborative retransmission. gk is the encryption key
for the current session shared by session members.

4.1 Initialization
The session begins with a call to CB.open() which will

initialize all process state for an OldBlue session. The ap-
plication is responsible for determining session membership
and negotiating a shared encryption key for the session.
We assume that all correct processes in the session exe-
cute CB.open(processes, pid, key) with the same value
of processes and gk and differing values of pid. The ap-
plication can ensure this by executing an appropriate Au-
thenticated Group Key Agreement protocol (e.g. [5]) before
calling CB.open(). CB.open() is defined as follows:

CB.open(processes, pid, key):

Processes = processes

Pid = pid

Requests = Processes × ∅
Delivered = ∅
Undelivered = ∅
Frontier = ∅
Wire = ∅
gk = key

4.2 Request Fulfillment
At the highest level, OldBlue works as a request fulfill-

ment engine, fulfilling requests in a fair order as determined
by the scheduler. OldBlue’s public methods add requests
to Requests for later fulfillment. Scheduling constraints are
encapsulated within the method schedule(), which returns
an eligible request from Requests subject to OldBlue’s Fair-
ness constrains. schedule() will block the main thread of
execution until a request becomes eligible as determined by
the eligible() function defined in Section 3.



class Request:

mid : MsgId

class Outgoing extends Request

class LostMsg extends Request

class Retransmit extends Request

CB.main():

repeat forever:

(owner, request) = schedule(Requests)

request.fulfill(this, owner)

OldBlue defines three kinds of Requests. Each Request

type stores the id of the message it corresponds to and de-
fines a fulfill() method which takes the actions necessary
to fulfill the request. Outgoing requests represent messages
CB.broadcast() by the local process. LostMsg requests in-
dicate causal predecessors required to deliver a message in
Undelivered which have not been received by the local pro-
cess. Retransmit requests track requests by other processes
to retransmit lost messages.

4.3 Message Transmission
Transmission of new messages (Figure 1) in OldBlue is

straightforward. Each Message encodes the author, the mes-
sage ids of all immediately causally preceding messages, and
the message payload provided by the application. The mes-
sage id of each message uniquely identifies the message within
the session by taking a digest over the author, the ids of all
causal predecessors, and the message payload. Immediately
self-delivering the message ensures that the self-delivery re-
quirement of Validity is satisfied. CB.broadcast() adds an
Outgoing request for the message id to the request queue of
the local process.

Fulfillment of the Outgoing request actually broadcasts
the message to the other processes in the session. A stan-
dard Encrypt-then-Sign construction [3] is used to prevent
forgery of messages by corrupt processes and to preserve con-
fidentiality and authenticity despite external adversaries. To
facilitate collaborative retransmission, the author’s identity
is included in the network-level payload which is also saved
in Wire for future retransmissions.
deliverMessage(m) performs the actual delivery of deliv-

erable message m. m is added to Delivered. m replaces any of
its immediate causal predecessors in Frontier and, finally,
m is provided to the application via CB.deliver().

4.4 Message Receipt
When a network-level message is received (Figure 2), its

signature is verified and it is decrypted. If any error oc-
curs in deserialization, signature verification, or decryption,
authDecrypt() returns null. Otherwise, it returns a re-
constituted Message or LostMsg object (we deal with LostMsg

in Section 4.5).
Message.receive() handles the actual processing of the

message. It first performs sanity checks to reject messages
with incorrect author or id fields, senders outside of the pro-
cess group, or previously delivered messages. It then re-
moves any requests to retransmit the current message that
the local process may have initiated. If the new message
had any immediate causal predecessors that have not been
received, a LostMsg request is added to the request queue for
the local process. The arrival of a message may cause mes-
sages in Undelivered to become deliverable. Therefore, the

class Message:

author : ProcId

parentids : Set of MsgId

payload : String

id : MsgId

id CB.broadcast(msg):

m = Message(author=Pid, payload=msg)

m.parentids = Frontier // causal preds

m.id = mid(m)

deliverMessage(m) // Self-delivery

addRequest(Pid, Outgoing(mid=m.id))

return m.id

MsgId mid(msg):

return H(msg.author, msg.parentids,

msg.payload)

deliverMessage(m):

Delivered[m.id] = m

for parent ∈ m.parentids:

Frontier = Frontier \ { parent }

// m is now a leaf of the causal graph

Frontier = Frontier ∪ { m.id }

CB.deliver(m.author, m.id, m.payload)

Outgoing.fulfill(cb, owner):

msg = cb.Delivered[mid]

cb.Wire[mid] = cb.authEncrypt(msg)

send(cb.Processes, cb.Wire[mid])

String authEncrypt(sender, payload):

ctxt = E(gk, encode(payload))

sig = S(sk(Pid), ctxt)

return encode(Pid, ctxt, sig)

// Add req to request queue for process p

addRequest(p, req):

Find i s.t. Requests[i] == (p, R)

Requests[i] = (p, R ∪ { req })

// Remove any requests by p equal to req

removeRequest(p, req):

Find i s.t. Requests[i] == (p, R)

Requests[i] = (p, R \ { req })

Figure 1: Implementation of CB.broadcast()

new message is added to the set of Undelivered messages
and all deliverable undelivered messages are delivered.

4.5 Message Loss and Retransmission
When a Message arrives before one of its causal prede-

cessors, correct processes assume that the predecessor has
been lost and they will add a LostMsg request to their re-
quest queue (Figure 3). Fulfillment of the LostMsg request
will cause the LostMsg request to be forwarded to other pro-
cesses, serving as a negative acknowledgment and requesting
that they retransmit the lost message. The “missing” causal
predecessor may not actually be lost, it may merely arrive
after a causally newer message making the LostMsg request
superfluous. We assume that eligible() delays LostMsg re-



Upon recv(sender, message):

(author, msgOrReq) = cb.authDecrypt(message)

if msgOrReq != null:

msgOrReq.receive(cb, author, message)

Object authDecrypt(payload):

(sender, ctxt, sig) = decode(payload)

if !V(pk(sender), ctxt, sig):

return null

obj = decode(D(gk, ctxt)

return obj ? (sender, obj) : null

Message.receive(cb, sender, payload):

// Reject pathologies

if sender != this.author: return

if mid(this) != this.id: return

if sender 6∈ Processes: return

if cb.Delivered[this.id] != null: return

// Remove requests to retransmit message

cb.removeRequest(cb.Pid, LostMsg(mid=id))

// Request missing parents

for parent ∈ parentids:

if cb.Delivered[parent] == null

and cb.Undelivered[parent] == null:

cb.addRequest(cb.Pid, LostMsg(mid=parent))

// Add to undelivered set

cb.Undelivered[id] = this

cb.Wire[id] = payload

do:

anyDelivered = false

for msg ∈ cb.Undelivered:

if cb.parentsDelivered(msg):

// Message is deliverable

delete cb.Undelivered[msg.id]

deliverMessage(msg)

anyDelivered = true

break // reconsider other undelivered msgs

while anyDelivered == true

bool parentsDelivered(msg):

for parentid ∈ msg.parentids:

if Delivered[parentid] == null:

return false

return true

Figure 2: Implementation of Message Receipt

quests in an attempt to minimize such superfluous requests.
Because the LostMsg request itself may be lost, correct

processes re-enqueue the LostMsg request, ensuring that the
process will continue to request lost messages until they
are received. Message.receive() will remove the associ-
ated LostMsg request from the local process’s request queue,
when the lost message is received.

When a LostMsg request is received from another process,
a corresponding Retransmit request is added to their re-
quest queue. When a correct process fulfills a Retransmit

request, it will forward a copy of the lost message to the
requesting process.

LostMsg.fulfill(cb, owner):

payload = cb.authEncncrypt(owner, this)

send(cb.Processes, payload)

cb.addRequest(cb.Pid, this)

LostMsg.receive(cb, sender, payload):

if sender ∈ cb.Processes:

cb.addRequest(sender, Retransmit(mid=this.mid))

Retransmit.fulfill(cb, owner):

if cb.Wire[mid] != null:

send({ owner }, cb.Wire[mid])

Retransmit.receive(cb, sender, payload):

// internal use only, do nothing

Figure 3: Implementation of negative acknowledg-
ment and retransmission

4.6 Satisfaction of Formal Properties
In this section, we provide proof sketches1 that OldBlue

satisfies the formal properties defined in Section 3.

Theorem 1. OldBlue satisfies Definition 3: Causal Con-
sistency. I.e. no correct process p will execute
CB.deliver(q, i, m), until it has delivered all messages m′

which causally precede m.

Proof Sketch. The proof is by contradiction. Suppose
that correct p delivers m before delivering a causally preced-
ing message m1. Choose m1 such that p has delivered a mes-
sage m2 where m1 is the direct causal predecessor of m2. (By
our assumption, such an m1 and m2 always exist with m2 pos-
sibly equal to m.) Each message contains the ids of immedi-
ate causal predecessors, therefore mid(m1) ∈ m2.parentids.
Thus, p delivered some message m1’ 6= m1 with
mid(m1) == mid(m1’). Therefore, (m1, m1’) constitute a
collision in H() contradicting its collision-resistance assump-
tion and establishing the proof.

We informally define and “associated message” to be re-
transmissions of a causal predecessors of m to p, or LostMsg

requests for m′ → m sent by p after receiving m to a correct
process possessing m′.

Theorem 2. OldBlue meets Definition 2: Validity. I.e.
correct process p self-delivers its own messages and will de-
liver any message m from correct process q if the adversary
delivers all associated messages.

Proof Sketch. Self-delivery is immediate by the imple-
mentation of CB.broadcast().

If p does not immediately CB.deliver() m, it is because
some m′ → m has not been received. p will issue a LostMsg

request for m′. Some correct process q holding m′ will receive
the request and eventually retransmit m′ to p because the
adversary is delivering all messages associated with m.This
process continues until all causal predecessors of m have been
received by p, at which time p will CB.deliver() m.

Theorem 3. OldBlue meets Definition 4: Authenticity.
I.e. a correct process q executes CB.deliver(p, i, m) at

1Full proofs omitted from conference version due to space
constraints.



most once for each value of i (and any values of p and m)
and, if p is correct, then p previously executed
i = CB.broadcast(m).

Proof Sketch. If q were to execute CB.deliver(p, i, m)

without p executing i = CB.broadcast(m), it would consti-
tute a successful attack on the provably secure Authenti-
cated Encryption construct used by OldBlue.

For q to execute both CB.deliver(_, i, m) and
CB.deliver(_, i, m’) for m 6= m′ would entail a collision
in H(), contradicting its collision-resistance assumption.

4.7 Implementation Concerns
In the foregoing, we have abstracted away implementation

tradeoffs by basing our design and arguments on idealized
primitives. In this section, we identify desirable properties
for practical implementations.

4.7.1 Limiting Process State
OldBlue can limit the amount of internal state each pro-

cess must store by bounding the size of Delivered,
Undelivered, and each queue in Requests.

The size of the delivered message set (Delivered) can be
limited by garbage collecting stable messages. A message be-
comes stable only if the local process has delivered a causally
newer message from each other process. This ensures the
local process that no correct process will require retransmis-
sion of a stable message. If the length of a session and the
maximum message transmission rate are bounded, an upper
bound can be placed on the maximum number of unstable
messages in a session.

The size of process request queues in Requests can be
bounded as follows. The number of queued outgoing mes-
sages for the local process can be bounded by blocking the
application once a predetermined threshold is reached. The
number of outgoing retransmission requests can be bounded
by generating them in a lazy fashion, at the moment that
a retransmission request may be sent out. This provides an
additional benefit of ensuring that outgoing retransmission
requests reflect the most recent information available.

Request queues for remote processes can be bounded by
fixing a parameter k and storing only k requests for each
process. Limiting the number of retransmission requests in
this way will not violate correctness because correct pro-
cesses will continue to request missing messages until they
are received.

The size of Undelivered can be limited by storing only k
causally oldest messages from each process for some parame-
ter k. Causal Consistency requires that, of all messages from
a given correct process, the causally oldest message must be
delivered first. In order to allow a process to determine the
causal relationship between messages authored by the same
process, all processes must be able to compute a consistent
total ordering over the message ids of all messages sent by
a given correct process. This can be achieved without im-
pacting the collision-freeness of mid() by appending to the
message digest a monotonically increasing sequence number
indicating causality between messages authored by a single
process.

4.7.2 Detecting Message Loss
Because the network is assumed to be unreliable and asyn-

chronous, it is impossible to distinguish a lost message from
a message with a long delivery delay. Therefore, processes

must make an approximate determination of when a message
has been lost and ensure that a LostMsg requests will even-
tually be issued for any message that has not been received.
For efficiency, LostMsg delay strategies should ensure that
sent LostMsg requests for messages that have not been lost
will be infrequent and, when a message is lost, it should be
discovered in a timely manner to minimize delivery delay of
causally dependent messages.

This is often achieved in practice via timeouts. A timer
begins when a message is received. If the timeout elapses
before all causal predecessors are received, retransmission
requests for missing predecessors will be sent. The timeout
threshold can be optimized based on the observed delivery
delay from each other process.

4.7.3 Minimizing Retransmission Requests
The simple retransmission mechanism given above pes-

simistically requests retransmission of every missing causal
predecessor of each received message. Duplicate retrans-
mission requests can be reduced by judiciously introducing
delays before a retransmission request is issued—subject the
requirement that eventually retransmission requests will be
sent repeatedly for each lost message until the message is
received.

To avoid feedback implosion, on expectation some small
number of processes should request retransmission of a lost
message. This can be achieved by randomly choosing re-
transmission request delays proportional to the number of
processes and permitting a finite amount of additional back-
off when requests from other processes are observed.

The number of retransmission requests can be further re-
duced by allowing them to identify entire missing causal
subgraphs. Correct processes can choose their delay before
requesting a retransmission in a way that causes the process
missing the most messages to be the most likely to send their
request first.

4.7.4 Minimizing Duplicate Retransmissions
The retransmission mechanism given above is also pes-

simistic. Every correct process will retransmit a requested
message separately to each process that requested it. Ideally,
we would like one correct process to retransmit (multicast
if possible) a message to all processes that requested it and
for correct processes to share the duty of retransmitting lost
messages.

This can be achieved in a manner similar to reducing re-
transmission requests by randomly choosing retransmission
delays. Deleting pending retransmission requests when a
process indicates that it has delivered a causally newer mes-
sages than the requested message can help reduce duplicate
retransmissions further.

5. EVALUATION
To better understand OldBlue’s performance we created

a protocol simulator using NS-3. We measured OldBlue’s
throughput and message delivery latency by sending null
messages in sessions while varying parameters as indicated
in Table 1. The results are shown in Figure 4.

For each parameter configuration, we simulated three runs
of up to 5 minutes of protocol interaction with the following
simplifying assumptions. Processes use the estimated round
trip time (RTT) to other processes to delay LostMsg requests
and retransmissions. Because estimation is not part of this
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Figure 4: Null message delivery latency (top) and throughput (bottom) for varying RTT (left), loss rate
(right) and session size.

Table 1: Simulation Parameter Choices
Number of processes 2, 3, 5, 10
Packet loss rate 0, 0.01, 0.05, 0.1, 0.2
Round Trip Time (ms) 2, 10, 20, 100, 200
Number of messages 1,000 or 5 minutes of sim. time

work, we fixed the estimated RTT to other processes at 4x
the actual RTT. We conservatively estimated that each en-
cryption or decryption operation took 4 microseconds and
that each digital signature sign and verify operation took 480
microseconds. These values were obtained by running a mi-
crobenchmark that encrypts and signs 1 KB messages using
AES-128 in CTR mode and RSASSA-PKCS1-v1 5 on our
test system—an 8-core Intel Intel Xeon 2.67 GHz machine
with 12 GB RAM running Ubuntu Linux 10.04 x86 64.

All session processes were locally connected to a simu-
lated Ethernet LAN and ran OldBlue over UDP. Because
we wanted to test the protocol without assuming hardware
or IP multicast, simulated processes unicast messages to all
other session processes. In contrast to the protocol above,
when a process fulfills a Retransmit request, it multicasts
the lost message to all processes.

Figure 4 depicts our measurements of the latency and
throughput of null message delivery (respectively). In fig-
ures which vary RTT the network does not drop any packets.
In figures which vary packet loss rate, the network RTT is
fixed at 2 ms.

Message delivery latency is reported in multiples of the
network RTT. The latency vs. RTT are ideal in the sense
that, for fixed session size, even as RTT increases the la-

tency remains close to a constant multiple of the RTT. The
overhead should be able to be improved with an optimized
implementation. The graph for latency vs. loss rate was
obtained with the RTT fixed at 2 ms. As packet loss rate
increases, latency increases.

Ideally, throughput should be unaffected by increasing
RTT. However, the graphs of throughput vs. RTT show an
approximate slope of -4 for the relationship between through-
put and RTT. There are two factors that influence these re-
sults. When processes need to estimate the RTT to break
synchrony, the simulator gives them a 4x overestimate of
the network RTT. Thus, with an RTT estimation scheme
that is more accurate in practice, the relationship between
throughput and RTT can be improved. Furthermore, be-
cause all processes are connected to a simulated half-duplex
Ethernet LAN, only one process may send a packet at a
time. Thus, unlike real networks, increasing RTT causes
a corresponding linear decrease in the effective bandwidth
of the network connection. Therefore, this simulation de-
picts a pessimistic lower bound on throughput performance.
An implementation on a more realistic network with an ac-
curate RTT estimation strategy should show even stronger
throughput performance.

Throughput also fairs well under packet loss when network
characteristics are taken into account. Because the simula-
tor simulates broadcast by n unicasts a lost message will
create 2 · n additional messages in the best case (n LostMsg

requests and a retransmission to n processes). In most cases,
the decrease in throughput is consistent with approximately
2 · n additional messages being sent as the result of each
message loss.

Examining the effect of session size on throughput and



latency we see that these performance metrics appear to de-
crease proportional to the square of the group size. This is
unsurprising due to total amount of traffic between all pro-
cesses growing proportionally to the square of the number
of processes because of the use of direct unicast between all
processes.

6. RELATED WORK
Broadcast protocols for distributed systems and mecha-

nisms for preserving various ordering properties have a long
history in the literature. Despite this, we are unaware of
any protocol that provides the properties of OldBlue in a
strong threat model. Many protocols [13, 1, 16, 9, 4] are
not secure against Byzantine adversaries that can corrupt
system members. Many protocols that are secure against
a Byzantine adversary [10, 7, 19, 2, 11] either cannot en-
sure liveness among connected processes during a network
partition or are not resilient to adversaries which can cor-
rupt t ≥ n

3
nodes as required by our threat model. Below,

we compare concepts shared by most of these systems with
OldBlue’s requirements.

Psync. The causal broadcast property provided by Old-
Blue was partially inspired by Peterson et al.’s Psync proto-
col [16]. Psync provides an IPC mechanism for distributed
systems that maintains the causal ordering between deliv-
ered messages in an environment subject to benign fail-
ures. OldBlue’s Byzantine threat model leads to several non-
trivial differences. Because Psync assumes that processes are
correct, it is susceptible attack by corrupt processes. For in-
stance, a duplicitous process can cause correct processes to
deliver conflicting messages leading to differing causal his-
tories. There is no mechanism in place to ensure that sub-
sequent communication between the correct processes will
disclose that their views differ. Psync does not attempt
to enforce fairness. This allows corrupt processes to expend
the resources of correct processes unchecked. Lastly, Psync’s
flow control mechanisms are stability-based — correct pro-
cesses block when there are too many unstable messages.
This has serious consequences to Psync’s robustness to ad-
versarial control because corrupt processes can effectively
prevent any message from becoming stable, destroying ses-
sion throughput for correct processes.

Reliable Broadcast. The properties of OldBlue are very
similar to, and were inspired by, Reliable Broadcast. Reli-
able Broadcast provides a mechanism to broadcast messages
such that all correct processes deliver the same set of mes-
sages and all correct processes deliver all messages broadcast
by all correct processes. Hadzilacos and Toueg [10] demon-
strate that Reliable Broadcast can be extended in a modular
fashion to provide various guarantees on message delivery
order.

A protocol provides Reliable Broadcast if it ensures the
following four properties, as given by Cachin et al. [7]. In
the following, each message is associated with a tag. The
tag ID.j.s is used to indicate the message with sequence
number s sent by correct process Pj in session ID.

R-Validity If a correct process has r-broadcast m tagged
with ID.j.s, then all correct processes r-deliver m tag-
ged with ID.j.s, provided all correct processes have
been activated on ID.j.s and the adversary delivers

all associated messages.

R-Consistency If some correct process r-delivers m tagged
with ID.j.s and another correct process r-delivers m′

tagged with ID.j.s, then m = m′.

R-Totality If some correct process r-delivers a message tag-
ged with ID.j.s, then all correct processes r-deliver
some message tagged with ID.j.s, provided all correct
processes have been activated on ID.j.s and the ad-
versary delivers all associated messages.

R-Authenticity For all ID, senders Pj , and sequence num-
bers s, every correct process r-delivers at most one
message m tagged with ID.j.s. Moreover, if Pj is cor-
rect, then m was previously r-broadcast by Pj with se-
quence number s.

The definition of OldBlue purposefully differs from Reli-
able Broadcast in the following ways:

1. R-Validity requires a correct process to r-deliver a mes-
sage only if the adversary delivers all associated mes-
sages. By contrast, OldBlue’s Validity property re-
quires liveness among processes in a connected compo-
nent during a network partition by requiring any q that
receives all messages associated with
CB.broadcast(m) to deliver m.

2. R-Totality ensures that all correct processes deliver
the same set of messages regardless of the correctness
of the author. This requires communication between
correct processes for each delivery operation. Cachin
et al. note that R-Totality is responsible for the O(n2)
communication complexity of most Reliable Broadcast
protocols.

R-Totality conflicts with OldBlue’s requirement for live-
ness during network partitions. Causal Consistency
(Definition 3) is weaker than R-Totality. Instead of
guaranteeing consistency between all correct processes,
Causal Consistency guarantees consistency pairwise.
Upon delivery of message m from a correct sender, a
correct deliverer is guaranteed to be consistent with
the sender with respect to m and causally preceding
messages.

3. R-Consistency and R-Authenticity are both guaran-
teed by Authenticity (Definition 4).

Consistent Broadcast. A Consistent Broadcast [7] proto-
col satisfies R-Validity, R-Consistency, and R-Authenticity
above but not R-Totality. As noted above, R-Validity con-
flicts with our requirements. Therefore, Consistent Broad-
cast is unsuitable for our purposes as well.

Byzantine Agreement. Byzantine Agreement, the Byzan-
tine Generals’ Problem [12], and the closely related Con-
sensus [10] Problem, refer to the problem of ensuring that
all processes in a distributed system agree on a value pro-
posed by one, or more, processes. Like Reliable Broadcast,
any protocol which depends on Byzantine Agreement is in-
compatible with OldBlue’s formal requirements. Byzantine
Agreement requires agreement — if a correct process de-
cides x, all correct processes eventually decide x and, if the



proposing process was correct, x was the value proposed.
Unless all messages are known a priori, this property is in-
compatible with Validity—processes in a connected compo-
nent must be able to deliver messages even during a network
partition. For Byzantine Agreement to satisfy Validity, pro-
cesses in different components of a network partition would
need to reach the same session transcript without commu-
nicating with processes in other components.

7. FUTURE WORK
We are currently simulating various aspects of the Old-

Blue protocol to help guide implementation decisions. We
plan to provide an implementation for general use. We also
intend to explore membership algorithms compatible with
our threat model.

8. CONCLUSION
We have presented OldBlue—a causal broadcast protocol

secure against an arbitrary number of Byzantine failures.
We have formally defined the properties that OldBlue pro-
vides and proven that the proposed protocol meets the for-
mal definitions.
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